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Pelican is a static site generator, written in Python. Highlights include:

• Write your content directly with your editor of choice in reStructuredText or Markdown formats

• Includes a simple CLI tool to (re)generate your site

• Easy to interface with distributed version control systems and web hooks

• Completely static output is easy to host anywhere

Ready to get started? Check out the Quickstart guide.

Contents 1
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CHAPTER 1

Features

Pelican 4 currently supports:

• Articles (e.g., blog posts) and pages (e.g., “About”, “Projects”, “Contact”)

• Comments, via an external service (Disqus). If you prefer to have more control over your comment data, self-
hosted comments are another option. Check out the Pelican Plugins repository for more details.

• Theming support (themes are created using Jinja2 templates)

• Publication of articles in multiple languages

• Atom/RSS feeds

• Code syntax highlighting

• Import from WordPress, Dotclear, or RSS feeds

• Integration with external tools: Twitter, Google Analytics, etc. (optional)

• Fast rebuild times thanks to content caching and selective output writing

3
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CHAPTER 2

Why the name “Pelican”?

“Pelican” is an anagram for calepin, which means “notebook” in French. ;)

5
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CHAPTER 3

Source code

You can access the source code at: https://github.com/getpelican/pelican
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CHAPTER 4

How to get help, contribute, or provide feedback

See our feedback and contribution submission guidelines.

9
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CHAPTER 5

Documentation

5.1 Quickstart

Reading through all the documentation is highly recommended, but for the truly impatient, following are some quick
steps to get started.

5.1.1 Installation

Install Pelican (and optionally Markdown if you intend to use it) on Python 3.6+ by running the following command
in your preferred terminal, prefixing with sudo if permissions warrant:

python -m pip install "pelican[markdown]"

5.1.2 Create a project

First, choose a name for your project, create an appropriately-named directory for your site, and switch to that direc-
tory:

mkdir -p ~/projects/yoursite
cd ~/projects/yoursite

Create a skeleton project via the pelican-quickstart command, which begins by asking some questions about
your site:

pelican-quickstart

For questions that have default values denoted in brackets, feel free to use the Return key to accept those default
values1. When asked for your URL prefix, enter your domain name as indicated (e.g., https://example.com).

1 You can help localize default fields by installing the optional tzlocal module.

11
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5.1.3 Create an article

You cannot run Pelican until you have created some content. Use your preferred text editor to create your first article
with the following content:

Title: My First Review
Date: 2010-12-03 10:20
Category: Review

Following is a review of my favorite mechanical keyboard.

Given that this example article is in Markdown format, save it as ~/projects/yoursite/content/
keyboard-review.md.

5.1.4 Generate your site

From your project root directory, run the pelican command to generate your site:

pelican content

Your site has now been generated inside the output/ directory. (You may see a warning related to feeds, but that is
normal when developing locally and can be ignored for now.)

5.1.5 Preview your site

Open a new terminal session, navigate to your project root directory, and run the following command to launch
Pelican’s web server:

pelican --listen

Preview your site by navigating to http://localhost:8000/ in your browser.

Continue reading the other documentation sections for more detail, and check out the Pelican wiki’s Tutorials page for
links to community-published tutorials.

5.1.6 Footnotes

5.2 Installing Pelican

Pelican currently runs best on 3.6+; earlier versions of Python are not supported.

You can install Pelican via several different methods. The simplest is via Pip:

python -m pip install pelican

Or, if you plan on using Markdown:

python -m pip install "pelican[markdown]"

(Keep in mind that some operating systems will require you to prefix the above command with sudo in order to install
Pelican system-wide.)

12 Chapter 5. Documentation
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While the above is the simplest method, the recommended approach is to create a virtual environment for Pelican via
virtualenv before installing Pelican. Assuming you have virtualenv installed, you can then open a new terminal session
and create a new virtual environment for Pelican:

virtualenv ~/virtualenvs/pelican
cd ~/virtualenvs/pelican
source bin/activate

Once the virtual environment has been created and activated, Pelican can be installed via python -m pip
install pelican as noted above. Alternatively, if you have the project source, you can install Pelican using
the distutils method:

cd path-to-Pelican-source
python setup.py install

If you have Git installed and prefer to install the latest bleeding-edge version of Pelican rather than a stable release,
use the following command:

python -m pip install -e "git+https://github.com/getpelican/pelican.git#egg=pelican"

Once Pelican is installed, you can run pelican --help to see basic usage options. For more detail, refer to the
Publish section.

5.2.1 Optional packages

If you plan on using Markdown as a markup format, you can install Pelican with Markdown support:

python -m pip install "pelican[markdown]"

Typographical enhancements can be enabled in your settings file, but first the requisite Typogrify library must be
installed:

python -m pip install typogrify

5.2.2 Dependencies

When Pelican is installed, the following dependent Python packages should be automatically installed without any
action on your part:

• feedgenerator, to generate the Atom feeds

• jinja2, for templating support

• pygments, for syntax highlighting

• docutils, for supporting reStructuredText as an input format

• pytz, for timezone definitions

• blinker, an object-to-object and broadcast signaling system

• unidecode, for ASCII transliterations of Unicode text utilities

• MarkupSafe, for a markup-safe string implementation

• python-dateutil, to read the date metadata

5.2. Installing Pelican 13
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5.2.3 Upgrading

If you installed a stable Pelican release via Pip and wish to upgrade to the latest stable release, you can do so by adding
--upgrade:

python -m pip install --upgrade pelican

If you installed Pelican via distutils or the bleeding-edge method, simply perform the same step to install the most
recent version.

5.2.4 Kickstart your site

Once Pelican has been installed, you can create a skeleton project via the pelican-quickstart command, which
begins by asking some questions about your site:

pelican-quickstart

If run inside an activated virtual environment, pelican-quickstart will look for an associated project path
inside $VIRTUAL_ENV/.project. If that file exists and contains a valid directory path, the new Pelican project
will be saved at that location. Otherwise, the default is the current working directory. To set the new project path on
initial invocation, use: pelican-quickstart --path /your/desired/directory

Once you finish answering all the questions, your project will consist of the following hierarchy (except for pages —
shown in parentheses below — which you can optionally add yourself if you plan to create non-chronological content):

yourproject/
content

(pages)
output
tasks.py
Makefile
pelicanconf.py # Main settings file
publishconf.py # Settings to use when ready to publish

The next step is to begin to adding content to the content folder that has been created for you.

5.3 Writing content

5.3.1 Articles and pages

Pelican considers “articles” to be chronological content, such as posts on a blog, and thus associated with a date.

The idea behind “pages” is that they are usually not temporal in nature and are used for content that does not change
very often (e.g., “About” or “Contact” pages).

You can find sample content in the repository at samples/content/.

5.3.2 File metadata

Pelican tries to be smart enough to get the information it needs from the file system (for instance, about the category
of your articles), but some information you need to provide in the form of metadata inside your files.

If you are writing your content in reStructuredText format, you can provide this metadata in text files via the following
syntax (give your file the .rst extension):

14 Chapter 5. Documentation
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My super title
##############

:date: 2010-10-03 10:20
:modified: 2010-10-04 18:40
:tags: thats, awesome
:category: yeah
:slug: my-super-post
:authors: Alexis Metaireau, Conan Doyle
:summary: Short version for index and feeds

Author and tag lists may be semicolon-separated instead, which allows you to write authors and tags containing
commas:

:tags: pelican, publishing tool; pelican, bird
:authors: Metaireau, Alexis; Doyle, Conan

Pelican implements an extension to reStructuredText to enable support for the abbr HTML tag. To use it, write
something like this in your post:

This will be turned into :abbr:`HTML (HyperText Markup Language)`.

You can also use Markdown syntax (with a file ending in .md, .markdown, .mkd, or .mdown). Markdown gener-
ation requires that you first explicitly install the Python-Markdown package, which can be done via pip install
Markdown.

Pelican also supports Markdown Extensions, which might have to be installed separately if they are not included in
the default Markdown package and can be configured and loaded via the MARKDOWN setting.

Metadata syntax for Markdown posts should follow this pattern:

Title: My super title
Date: 2010-12-03 10:20
Modified: 2010-12-05 19:30
Category: Python
Tags: pelican, publishing
Slug: my-super-post
Authors: Alexis Metaireau, Conan Doyle
Summary: Short version for index and feeds

This is the content of my super blog post.

You can also have your own metadata keys (so long as they don’t conflict with reserved metadata keywords) for use in
your templates. The following table contains a list of reserved metadata keywords:

5.3. Writing content 15
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Metadata Description
title Title of the article or page
date Publication date (e.g., YYYY-MM-DD HH:SS)
modified Modification date (e.g., YYYY-MM-DD HH:SS)
tags Content tags, separated by commas
keywords Content keywords, separated by commas (HTML content only)
category Content category (one only — not multiple)
slug Identifier used in URLs and translations
author Content author, when there is only one
authors Content authors, when there are multiple
summary Brief description of content for index pages
lang Content language ID (en, fr, etc.)
translation If content is a translation of another (true or false)
status Content status: draft, hidden, or published
template Name of template to use to generate content (without extension)
save_as Save content to this relative file path
url URL to use for this article/page

Readers for additional formats (such as AsciiDoc) are available via plugins. Refer to pelican-plugins repository for
those.

Pelican can also process HTML files ending in .html and .htm. Pelican interprets the HTML in a very straight-
forward manner, reading metadata from meta tags, the title from the title tag, and the body out from the body
tag:

<html>
<head>

<title>My super title</title>
<meta name="tags" content="thats, awesome" />
<meta name="date" content="2012-07-09 22:28" />
<meta name="modified" content="2012-07-10 20:14" />
<meta name="category" content="yeah" />
<meta name="authors" content="Alexis Métaireau, Conan Doyle" />
<meta name="summary" content="Short version for index and feeds" />

</head>
<body>

This is the content of my super blog post.
</body>

</html>

With HTML, there is one simple exception to the standard metadata: tags can be specified either via the tags
metadata, as is standard in Pelican, or via the keywords metadata, as is standard in HTML. The two can be used
interchangeably.

Note that, aside from the title, none of this content metadata is mandatory: if the date is not specified and
DEFAULT_DATE is set to 'fs', Pelican will rely on the file’s “mtime” timestamp, and the category can be deter-
mined by the directory in which the file resides. For example, a file located at python/foobar/myfoobar.rst
will have a category of foobar. If you would like to organize your files in other ways where the name of the sub-
folder would not be a good category name, you can set the setting USE_FOLDER_AS_CATEGORY to False. When
parsing dates given in the page metadata, Pelican supports the W3C’s suggested subset ISO 8601.

So the title is the only required metadata. If that bothers you, worry not. Instead of manually specifying a title in your
metadata each time, you can use the source content file name as the title. For example, a Markdown source file named
Publishing via Pelican.md would automatically be assigned a title of Publishing via Pelican. If you would
prefer this behavior, add the following line to your settings file:

16 Chapter 5. Documentation
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FILENAME_METADATA = '(?P<title>.*)'

Note: When experimenting with different settings (especially the metadata ones) caching may interfere and the
changes may not be visible. In such cases disable caching with LOAD_CONTENT_CACHE = False or use the
--ignore-cache command-line switch.

modified should be last time you updated the article, and defaults to date if not specified. Besides you can show
modified in the templates, feed entries in feed readers will be updated automatically when you set modified to
the current date after you modified your article.

authors is a comma-separated list of article authors. If there’s only one author you can use author field.

If you do not explicitly specify summary metadata for a given post, the SUMMARY_MAX_LENGTH setting can be used
to specify how many words from the beginning of an article are used as the summary.

You can also extract any metadata from the filename through a regular expression to be set in the
FILENAME_METADATA setting. All named groups that are matched will be set in the metadata object. The default
value for the FILENAME_METADATA setting will only extract the date from the filename. For example, if you would
like to extract both the date and the slug, you could set something like: '(?P<date>\d{4}-\d{2}-\d{2})_(?
P<slug>.*)'

Please note that the metadata available inside your files takes precedence over the metadata extracted from the filename.

5.3.3 Pages

If you create a folder named pages inside the content folder, all the files in it will be used to generate static pages,
such as About or Contact pages. (See example filesystem layout below.)

You can use the DISPLAY_PAGES_ON_MENU setting to control whether all those pages are displayed in the primary
navigation menu. (Default is True.)

If you want to exclude any pages from being linked to or listed in the menu then add a status: hidden attribute
to its metadata. This is useful for things like making error pages that fit the generated theme of your site.

5.3.4 Static content

Static files are files other than articles and pages that are copied to the output folder as-is, without processing. You
can control which static files are copied over with the STATIC_PATHS setting of the project’s pelicanconf.py
file. Pelican’s default configuration includes the images directory for this, but others must be added manually. In
addition, static files that are explicitly linked to are included (see below).

Mixed content in the same directory

Starting with Pelican 3.5, static files can safely share a source directory with page source files, without exposing the
page sources in the generated site. Any such directory must be added to both STATIC_PATHS and PAGE_PATHS
(or STATIC_PATHS and ARTICLE_PATHS). Pelican will identify and process the page source files normally, and
copy the remaining files as if they lived in a separate directory reserved for static files.

Note: Placing static and content source files together in the same source directory does not guarantee that they will
end up in the same place in the generated site. The easiest way to do this is by using the {attach} link syntax
(described below). Alternatively, the STATIC_SAVE_AS, PAGE_SAVE_AS, and ARTICLE_SAVE_AS settings
(and the corresponding *_URL settings) can be configured to place files of different types together, just as they could
in earlier versions of Pelican.

5.3. Writing content 17
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5.3.5 Linking to internal content

From Pelican 3.1 onwards, it is now possible to specify intra-site links to files in the source content hierarchy instead
of files in the generated hierarchy. This makes it easier to link from the current post to other content that may be sitting
alongside that post (instead of having to determine where the other content will be placed after site generation).

To link to internal content (files in the content directory), use the following syntax for the link target:
{filename}path/to/file Note: forward slashes, /, are the required path separator in the {filename} di-
rective on all operating systems, including Windows.

For example, a Pelican project might be structured like this:

website/
content

category/
article1.rst

article2.md
pages

about.md
pelican.conf.py

In this example, article1.rst could look like this:

The first article
#################

:date: 2012-12-01 10:02

See below intra-site link examples in reStructuredText format.

`a link relative to the current file <{filename}../article2.md>`_
`a link relative to the content root <{filename}/article2.md>`_

and article2.md:

Title: The second article
Date: 2012-12-01 10:02

See below intra-site link examples in Markdown format.

[a link relative to the current file]({filename}category/article1.rst)
[a link relative to the content root]({filename}/category/article1.rst)

Linking to static files

You can link to static content using {static}path/to/file. Files linked to with this syntax will automatically be
copied to the output directory, even if the source directories containing them are not included in the STATIC_PATHS
setting of the project’s pelicanconf.py file.

For example, a project’s content directory might be structured like this:

content
images

han.jpg
pdfs

menu.pdf

(continues on next page)
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(continued from previous page)

pages
test.md

test.md would include:

![Alt Text]({static}/images/han.jpg)
[Our Menu]({static}/pdfs/menu.pdf)

Site generation would then copy han.jpg to output/images/han.jpg, menu.pdf to output/pdfs/
menu.pdf, and write the appropriate links in test.md.

If you use {static} to link to an article or a page, this will be turned into a link to its source code.

Attaching static files

Starting with Pelican 3.5, static files can be “attached” to a page or article using this syntax for the link target:
{attach}path/to/file This works like the {static} syntax, but also relocates the static file into the linking
document’s output directory. If the static file originates from a subdirectory beneath the linking document’s source,
that relationship will be preserved on output. Otherwise, it will become a sibling of the linking document.

This only works for linking to static files.

For example, a project’s content directory might be structured like this:

content
blog

icons
icon.png

photo.jpg
testpost.md

downloads
archive.zip

pelicanconf.py would include:

PATH = 'content'
ARTICLE_PATHS = ['blog']
ARTICLE_SAVE_AS = '{date:%Y}/{slug}.html'
ARTICLE_URL = '{date:%Y}/{slug}.html'

testpost.md would include:

Title: Test Post
Category: test
Date: 2014-10-31

![Icon]({attach}icons/icon.png)
![Photo]({attach}photo.jpg)
[Downloadable File]({attach}/downloads/archive.zip)

Site generation would then produce an output directory structured like this:

output
2014

archive.zip
icons

(continues on next page)
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(continued from previous page)

icon.png
photo.jpg
test-post.html

Notice that all the files linked using {attach} ended up in or beneath the article’s output directory.

If a static file is linked multiple times, the relocating feature of {attach} will only work in the first of those links
to be processed. After the first link, Pelican will treat {attach} like {static}. This avoids breaking the already-
processed links.

Be careful when linking to a file from multiple documents: Since the first link to a file finalizes its location and
Pelican does not define the order in which documents are processed, using {attach} on a file linked by multiple
documents can cause its location to change from one site build to the next. (Whether this happens in practice will
depend on the operating system, file system, version of Pelican, and documents being added, modified, or removed
from the project.) Any external sites linking to the file’s old location might then find their links broken. It is therefore
advisable to use {attach} only if you use it in all links to a file, and only if the linking documents share a single
directory. Under these conditions, the file’s output location will not change in future builds. In cases where these
precautions are not possible, consider using {static} links instead of {attach}, and letting the file’s location be
determined by the project’s STATIC_SAVE_AS and STATIC_URL settings. (Per-file save_as and url overrides
can still be set in EXTRA_PATH_METADATA.)

Note: When using {attach}, any parent directory in *_URL / *_SAVE_AS settings should match each other. See
also: URL settings

Linking to authors, categories, index and tags

You can link to authors, categories, index and tags using the {author}name, {category}foobar, {index}
and {tag}tagname syntax.

Deprecated internal link syntax

To remain compatible with earlier versions, Pelican still supports vertical bars (||) in addition to curly braces ({})
for internal links. For example: |filename|an_article.rst, |tag|tagname, |category|foobar. The
syntax was changed from || to {} to avoid collision with Markdown extensions or reST directives. Similarly, Pelican
also still supports linking to static content with {filename}. The syntax was changed to {static} to allow
linking to both generated articles and pages and their static sources.

Support for the old syntax may eventually be removed.

Including other files

Both Markdown and reStructuredText syntaxes provide mechanisms for this.

Following below are some examples for reStructuredText using the include directive:

.. include:: file.rst

Include a fragment of a file delimited by two identifiers, highlighted as C++ (slicing based on line numbers is also
possible):

20 Chapter 5. Documentation
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.. include:: main.cpp
:code: c++
:start-after: // begin
:end-before: // end

Include a raw HTML file (or an inline SVG) and put it directly into the output without any processing:

.. raw:: html
:file: table.html

For Markdown, one must rely on an extension. For example, using the mdx_include plugin:

```html
{! template.html !}
```

5.3.6 Importing an existing site

It is possible to import your site from WordPress, Tumblr, Dotclear, and RSS feeds using a simple script. See Importing
an existing site.

5.3.7 Translations

It is possible to translate articles. To do so, you need to add a lang meta attribute to your articles/pages and set a
DEFAULT_LANG setting (which is English [en] by default). With those settings in place, only articles with the default
language will be listed, and each article will be accompanied by a list of available translations for that article.

Note: This core Pelican functionality does not create sub-sites (e.g. example.com/de) with translated templates
for each language. For such advanced functionality the i18n_subsites plugin can be used.

By default, Pelican uses the article’s URL “slug” to determine if two or more articles are translations of one another.
(This can be changed with the ARTICLE_TRANSLATION_ID setting.) The slug can be set manually in the file’s
metadata; if not set explicitly, Pelican will auto-generate the slug from the title of the article.

Here is an example of two articles, one in English and the other in French.

The English article:

Foobar is not dead
##################

:slug: foobar-is-not-dead
:lang: en

That's true, foobar is still alive!

And the French version:

Foobar n'est pas mort !
#######################

:slug: foobar-is-not-dead
:lang: fr

(continues on next page)
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(continued from previous page)

Oui oui, foobar est toujours vivant !

Post content quality notwithstanding, you can see that only item in common between the two articles is the slug, which
is functioning here as an identifier. If you’d rather not explicitly define the slug this way, you must then instead ensure
that the translated article titles are identical, since the slug will be auto-generated from the article title.

If you do not want the original version of one specific article to be detected by the DEFAULT_LANG setting, use the
translation metadata to specify which posts are translations:

Foobar is not dead
##################

:slug: foobar-is-not-dead
:lang: en
:translation: true

That's true, foobar is still alive!

5.3.8 Syntax highlighting

Pelican can provide colorized syntax highlighting for your code blocks. To do so, you must use the following conven-
tions inside your content files.

For reStructuredText, use the code-block directive to specify the type of code to be highlighted (in these examples,
we’ll use python):

.. code-block:: python

print("Pelican is a static site generator.")

For Markdown, which utilizes the CodeHilite extension to provide syntax highlighting, include the language identifier
just above the code block, indenting both the identifier and the code:

There are two ways to specify the identifier:

:::python
print("The triple-colon syntax will *not* show line numbers.")

To display line numbers, use a path-less shebang instead of colons:

#!python
print("The path-less shebang syntax *will* show line numbers.")

The specified identifier (e.g. python, ruby) should be one that appears on the list of available lexers.

When using reStructuredText the following options are available in the code-block directive:
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Op-
tion

Valid
val-
ues

Description

an-
chor-
li-
nenos

N/A If present wrap line numbers in <a> tags.

classpre-
fix

string String to prepend to token class names

hl_lines num-
bers

List of lines to be highlighted, where line numbers to highlight are separated by a space. This
is similar to emphasize-lines in Sphinx, but it does not support a range of line numbers
separated by a hyphen, or comma-separated line numbers.

lin-
ean-
chors

string Wrap each line in an anchor using this string and -linenumber.

linenos string If present or set to “table” output line numbers in a table, if set to “inline” output them inline.
“none” means do not output the line numbers for this table.

linenospe-
cial

num-
ber

If set every nth line will be given the ‘special’ css class.

linenos-
tart

num-
ber

Line number for the first line.

linenos-
tep

num-
ber

Print every nth line number.

line-
sepa-
rator

string String to print between lines of code, ‘n’ by default.

lines-
pans

string Wrap each line in a span using this and -linenumber.

noback-
ground

N/A If set do not output background color for the wrapping element

nowrap N/A If set do not wrap the tokens at all.
tags-
file

string ctags file to use for name definitions.

tagurl-
for-
mat

string format for the ctag links.

Note that, depending on the version, your Pygments module might not have all of these options available. Refer to the
HtmlFormatter section of the Pygments documentation for more details on each of the options.

For example, the following code block enables line numbers, starting at 153, and prefixes the Pygments CSS classes
with pgcss to make the names more unique and avoid possible CSS conflicts:

.. code-block:: identifier
:classprefix: pgcss
:linenos: table
:linenostart: 153

<indented code block goes here>

It is also possible to specify the PYGMENTS_RST_OPTIONS variable in your Pelican settings file to include options
that will be automatically applied to every code block.

For example, if you want to have line numbers displayed for every code block and a CSS prefix you would set this
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variable to:

PYGMENTS_RST_OPTIONS = {'classprefix': 'pgcss', 'linenos': 'table'}

If specified, settings for individual code blocks will override the defaults in your settings file.

5.3.9 Publishing drafts

If you want to publish an article or a page as a draft (for friends to review before publishing, for example), you can add
a Status: draft attribute to its metadata. That article will then be output to the drafts folder and not listed
on the index page nor on any category or tag page.

If your articles should be automatically published as a draft (to not accidentally publish an article before it is finished)
include the status in the DEFAULT_METADATA:

DEFAULT_METADATA = {
'status': 'draft',

}

To publish a post when the default status is draft, update the post’s metadata to include Status: published.

5.4 Publish your site

5.4.1 Site generation

Once Pelican is installed and you have some content (e.g., in Markdown or reST format), you can convert your content
into HTML via the pelican command, specifying the path to your content and (optionally) the path to your settings
file:

pelican /path/to/your/content/ [-s path/to/your/settings.py]

The above command will generate your site and save it in the output/ folder, using the default theme to produce a
simple site. The default theme consists of very simple HTML without styling and is provided so folks may use it as a
basis for creating their own themes.

When working on a single article or page, it is possible to generate only the file that corresponds to that content. To
do this, use the --write-selected argument, like so:

pelican --write-selected output/posts/my-post-title.html

Note that you must specify the path to the generated output file — not the source content. To determine the output
file name and location, use the --debug flag. If desired, --write-selected can take a comma-separated list of
paths or can be configured as a setting. (See: Writing only selected content)

You can also tell Pelican to watch for your modifications, instead of manually re-running it every time you want to
see your changes. To enable this, run the pelican command with the -r or --autoreload option. On non-
Windows environments, this option can also be combined with the -l or --listen option to simultaneously both
auto-regenerate and serve the output at http://localhost:8000:

pelican --autoreload --listen

Pelican has other command-line switches available. Have a look at the help to see all the options you can use:
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pelican --help

Viewing the generated files

The files generated by Pelican are static files, so you don’t actually need anything special to view them. You can use
your browser to open the generated HTML files directly:

firefox output/index.html

Because the above method may have trouble locating your CSS and other linked assets, running Pelican’s simple
built-in web server will often provide a more reliable previewing experience:

pelican --listen

Once the web server has been started, you can preview your site at: http://localhost:8000/

5.4.2 Deployment

After you have generated your site, previewed it in your local development environment, and are ready to deploy it to
production, you might first re-generate your site with any production-specific settings (e.g., analytics feeds, etc.) that
you may have defined:

pelican content -s publishconf.py

To base your publish configuration on top of your pelicanconf.py, you can import your pelicanconf settings
by including the following line in your publishconf.py:

from pelicanconf import *

If you have generated a publishconf.py using pelican-quickstart, this line is included by default.

The steps for deploying your site will depend on where it will be hosted. If you have SSH access to a server running
Nginx or Apache, you might use the rsync tool to transmit your site files:

rsync -avc --delete output/ host.example.com:/var/www/your-site/

There are many other deployment options, some of which can be configured when first setting up your site via the
pelican-quickstart command. See the Tips page for detail on publishing via GitHub Pages.

5.4.3 Automation

While the pelican command is the canonical way to generate your site, automation tools can be used to streamline
the generation and publication flow. One of the questions asked during the pelican-quickstart process pertains
to whether you want to automate site generation and publication. If you answered “yes” to that question, a tasks.
py and Makefile will be generated in the root of your project. These files, pre-populated with certain information
gleaned from other answers provided during the pelican-quickstart process, are meant as a starting point and
should be customized to fit your particular needs and usage patterns. If you find one or both of these automation
tools to be of limited utility, these files can deleted at any time and will not affect usage of the canonical pelican
command.

Following are automation tools that “wrap” the pelican command and can simplify the process of generating,
previewing, and uploading your site.
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Invoke

The advantage of Invoke is that it is written in Python and thus can be used in a wide range of environments. The
downside is that it must be installed separately. Use the following command to install Invoke, prefixing with sudo if
your environment requires it:

python -m pip install invoke

Take a moment to open the tasks.py file that was generated in your project root. You will see a number of
commands, any one of which can be renamed, removed, and/or customized to your liking. Using the out-of-the-box
configuration, you can generate your site via:

invoke build

If you’d prefer to have Pelican automatically regenerate your site every time a change is detected (which is handy
when testing locally), use the following command instead:

invoke regenerate

To serve the generated site so it can be previewed in your browser at http://localhost:8000/:

invoke serve

To serve the generated site with automatic browser reloading every time a change is detected, first python -m pip
install livereload, then use the following command:

invoke livereload

If during the pelican-quickstart process you answered “yes” when asked whether you want to upload your
site via SSH, you can use the following command to publish your site via rsync over SSH:

invoke publish

These are just a few of the commands available by default, so feel free to explore tasks.py and see what other
commands are available. More importantly, don’t hesitate to customize tasks.py to suit your specific needs and
preferences.

Make

A Makefile is also automatically created for you when you say “yes” to the relevant question during the
pelican-quickstart process. The advantage of this method is that the make command is built into most POSIX
systems and thus doesn’t require installing anything else in order to use it. The downside is that non-POSIX systems
(e.g., Windows) do not include make, and installing it on those systems can be a non-trivial task.

If you want to use make to generate your site using the settings in pelicanconf.py, run:

make html

To generate the site for production, using the settings in publishconf.py, run:

make publish

If you’d prefer to have Pelican automatically regenerate your site every time a change is detected (which is handy
when testing locally), use the following command instead:
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make regenerate

To serve the generated site so it can be previewed in your browser at http://localhost:8000/:

make serve

Normally you would need to run make regenerate and make serve in two separate terminal sessions, but you
can run both at once via:

make devserver

The above command will simultaneously run Pelican in regeneration mode as well as serve the output at http:
//localhost:8000.

When you’re ready to publish your site, you can upload it via the method(s) you chose during the
pelican-quickstart questionnaire. For this example, we’ll use rsync over ssh:

make rsync_upload

That’s it! Your site should now be live.

(The default Makefile and devserver.sh scripts use the python and pelican executables to complete its
tasks. If you want to use different executables, such as python3, you can set the PY and PELICAN environment
variables, respectively, to override the default executable names.)

5.5 Settings

Pelican is configurable thanks to a settings file you can pass to the command line:

pelican content -s path/to/your/pelicanconf.py

If you used the pelican-quickstart command, your primary settings file will be named pelicanconf.py
by default.

You can also specify extra settings via -e / --extra-settings option flags, which will override default settings
as well as any defined within settings files:

pelican content -e DELETE_OUTPUT_DIRECTORY=true

Note: When experimenting with different settings (especially the metadata ones) caching may interfere and the
changes may not be visible. In such cases disable caching with LOAD_CONTENT_CACHE = False or use the
--ignore-cache command-line switch.

Settings are configured in the form of a Python module (a file). There is an example settings file available for reference.

To see a list of current settings in your environment, including both default and any customized values, run the follow-
ing command (append one or more specific setting names as arguments to see values for those settings only):

pelican --print-settings

All the setting identifiers must be set in all-caps, otherwise they will not be processed. Setting values that are numbers
(5, 20, etc.), booleans (True, False, None, etc.), dictionaries, or tuples should not be enclosed in quotation marks. All
other values (i.e., strings) must be enclosed in quotation marks.
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Unless otherwise specified, settings that refer to paths can be either absolute or relative to the configuration file. The
settings you define in the configuration file will be passed to the templates, which allows you to use your settings to
add site-wide content.

Here is a list of settings for Pelican:

5.5.1 Basic settings

USE_FOLDER_AS_CATEGORY = True
When you don’t specify a category in your post metadata, set this setting to True, and organize your articles in
subfolders, the subfolder will become the category of your post. If set to False, DEFAULT_CATEGORY will
be used as a fallback.

DEFAULT_CATEGORY = 'misc'
The default category to fall back on.

DISPLAY_PAGES_ON_MENU = True
Whether to display pages on the menu of the template. Templates may or may not honor this setting.

DISPLAY_CATEGORIES_ON_MENU = True
Whether to display categories on the menu of the template. Templates may or not honor this setting.

DOCUTILS_SETTINGS = {}
Extra configuration settings for the docutils publisher (applicable only to reStructuredText). See Docutils Con-
figuration settings for more details.

DELETE_OUTPUT_DIRECTORY = False
Delete the output directory, and all of its contents, before generating new files. This can be useful in preventing
older, unnecessary files from persisting in your output. However, this is a destructive setting and should be
handled with extreme care.

OUTPUT_RETENTION = []
A list of filenames that should be retained and not deleted from the output directory. One use case would be the
preservation of version control data.

Example:

OUTPUT_RETENTION = [".hg", ".git", ".bzr"]

JINJA_ENVIRONMENT = {'trim_blocks': True, 'lstrip_blocks': True}
A dictionary of custom Jinja2 environment variables you want to use. This also includes a list of extensions you
may want to include. See Jinja Environment documentation.

JINJA_FILTERS = {}
A dictionary of custom Jinja2 filters you want to use. The dictionary should map the filtername to the filter
function.

Example:: import sys sys.path.append(‘to/your/path’)

from custom_filter import urlencode_filter JINJA_FILTERS = {‘urlencode’: urlencode_filter}

See: Jinja custom filters documentation.

JINJA_GLOBALS = {}
A dictionary of custom objects to map into the Jinja2 global environment namespace. The dictionary should
map the global name to the global variable/function. See: Jinja global namespace documentation.

JINJA_TESTS = {}
A dictionary of custom Jinja2 tests you want to use. The dictionary should map test names to test functions.
See: Jinja custom tests documentation.
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LOG_FILTER = []
A list of tuples containing the logging level (up to warning) and the message to be ignored.

Example:

LOG_FILTER = [(logging.WARN, 'TAG_SAVE_AS is set to False')]

READERS = {}
A dictionary of file extensions / Reader classes for Pelican to process or ignore.

For example, to avoid processing .html files, set:

READERS = {'html': None}

To add a custom reader for the foo extension, set:

READERS = {'foo': FooReader}

IGNORE_FILES = ['.#*']
A list of glob patterns. Files and directories matching any of these patterns will be ignored by the processor. For
example, the default ['.#*'] will ignore emacs lock files, and ['__pycache__'] would ignore Python
3’s bytecode caches.

MARKDOWN = {...}
Extra configuration settings for the Markdown processor. Refer to the Python Markdown documentation’s
Options section for a complete list of supported options. The extensions option will be automatically
computed from the extension_configs option.

Defaults to:

MARKDOWN = {
'extension_configs': {

'markdown.extensions.codehilite': {'css_class': 'highlight'},
'markdown.extensions.extra': {},
'markdown.extensions.meta': {},

},
'output_format': 'html5',

}

Note: The dictionary defined in your settings file will replace this default one.

OUTPUT_PATH = 'output/'
Where to output the generated files. This should correspond to your web server’s virtual host root directory.

PATH
Path to content directory to be processed by Pelican. If undefined, and content path is not specified via an
argument to the pelican command, Pelican will use the current working directory.

PAGE_PATHS = ['pages']
A list of directories and files to look at for pages, relative to PATH.

PAGE_EXCLUDES = []
A list of directories to exclude when looking for pages in addition to ARTICLE_PATHS.

ARTICLE_PATHS = ['']
A list of directories and files to look at for articles, relative to PATH.

ARTICLE_EXCLUDES = []
A list of directories to exclude when looking for articles in addition to PAGE_PATHS.
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OUTPUT_SOURCES = False
Set to True if you want to copy the articles and pages in their original format (e.g. Markdown or reStructured-
Text) to the specified OUTPUT_PATH.

OUTPUT_SOURCES_EXTENSION = '.text'
Controls the extension that will be used by the SourcesGenerator. Defaults to .text. If not a valid string the
default value will be used.

PLUGINS = None
The list of plugins to load. See Plugins.

PLUGIN_PATHS = []
A list of directories where to look for plugins. See Plugins.

SITENAME = 'A Pelican Blog'
Your site name

SITEURL
Base URL of your web site. Not defined by default, so it is best to specify your SITEURL; if you do not, feeds
will not be generated with properly-formed URLs. If your site is available via HTTPS, this setting should begin
with https:// — otherwise use http://. Then append your domain, with no trailing slash at the end.
Example: SITEURL = 'https://example.com'

STATIC_PATHS = ['images']
A list of directories (relative to PATH) in which to look for static files. Such files will be copied to the output
directory without modification. Articles, pages, and other content source files will normally be skipped, so it is
safe for a directory to appear both here and in PAGE_PATHS or ARTICLE_PATHS. Pelican’s default settings
include the “images” directory here.

STATIC_EXCLUDES = []
A list of directories to exclude when looking for static files.

STATIC_EXCLUDE_SOURCES = True
If set to False, content source files will not be skipped when copying files found in STATIC_PATHS.
This setting is for backward compatibility with Pelican releases before version 3.5. It has no effect unless
STATIC_PATHS contains a directory that is also in ARTICLE_PATHS or PAGE_PATHS. If you are trying to
publish your site’s source files, consider using the OUTPUT_SOURCES setting instead.

STATIC_CREATE_LINKS = False
Create links instead of copying files. If the content and output directories are on the same device, then create
hard links. Falls back to symbolic links if the output directory is on a different filesystem. If symlinks are
created, don’t forget to add the -L or --copy-links option to rsync when uploading your site.

STATIC_CHECK_IF_MODIFIED = False
If set to True, and STATIC_CREATE_LINKS is False, compare mtimes of content and output files, and
only copy content files that are newer than existing output files.

TYPOGRIFY = False
If set to True, several typographical improvements will be incorporated into the generated HTML via the Ty-
pogrify library, which can be installed via: python -m pip install typogrify

TYPOGRIFY_IGNORE_TAGS = []
A list of tags for Typogrify to ignore. By default Typogrify will ignore pre and code tags. This requires that
Typogrify version 2.0.4 or later is installed

TYPOGRIFY_DASHES = 'default'
This setting controls how Typogrify sets up the Smartypants filter to interpret multiple dash/hyphen/minus
characters. A single ASCII dash character (-) is always rendered as a hyphen. The default setting
does not handle en-dashes and converts double-hyphens into em-dashes. The oldschool setting renders
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both en-dashes and em-dashes when it sees two (--) and three (---) hyphen characters, respectively. The
oldschool_inverted setting turns two hyphens into an em-dash and three hyphens into an en-dash.

SUMMARY_MAX_LENGTH = 50
When creating a short summary of an article, this will be the default length (measured in words) of the text
created. This only applies if your content does not otherwise specify a summary. Setting to None will cause the
summary to be a copy of the original content.

SUMMARY_END_SUFFIX = '...'
When creating a short summary of an article and the result was truncated to match the required word length, this
will be used as the truncation suffix.

WITH_FUTURE_DATES = True
If disabled, content with dates in the future will get a default status of draft. See Reading only modified
content for caveats.

INTRASITE_LINK_REGEX = '[{|](?P<what>.*?)[|}]'
Regular expression that is used to parse internal links. Default syntax when linking to internal files, tags, etc., is
to enclose the identifier, say filename, in {} or ||. Identifier between { and } goes into the what capturing
group. For details see Linking to internal content.

PYGMENTS_RST_OPTIONS = []
A list of default Pygments settings for your reStructuredText code blocks. See Syntax highlighting for a list of
supported options.

CACHE_CONTENT = False
If True, saves content in caches. See Reading only modified content for details about caching.

CONTENT_CACHING_LAYER = 'reader'
If set to 'reader', save only the raw content and metadata returned by readers. If set to 'generator',
save processed content objects.

CACHE_PATH = 'cache'
Directory in which to store cache files.

GZIP_CACHE = True
If True, use gzip to (de)compress the cache files.

CHECK_MODIFIED_METHOD = 'mtime'
Controls how files are checked for modifications.

LOAD_CONTENT_CACHE = False
If True, load unmodified content from caches.

WRITE_SELECTED = []
If this list is not empty, only output files with their paths in this list are written. Paths should be either absolute
or relative to the current Pelican working directory. For possible use cases see Writing only selected content.

FORMATTED_FIELDS = ['summary']
A list of metadata fields containing reST/Markdown content to be parsed and translated to HTML.

PORT = 8000
The TCP port to serve content from the output folder via HTTP when pelican is run with –listen

BIND = ''
The IP to which to bind the HTTP server.

5.5.2 URL settings

The first thing to understand is that there are currently two supported methods for URL formation: relative and abso-
lute. Relative URLs are useful when testing locally, and absolute URLs are reliable and most useful when publishing.
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One method of supporting both is to have one Pelican configuration file for local development and another for publish-
ing. To see an example of this type of setup, use the pelican-quickstart script as described in the Installation
section, which will produce two separate configuration files for local development and publishing, respectively.

You can customize the URLs and locations where files will be saved. The *_URL and *_SAVE_AS variables use
Python’s format strings. These variables allow you to place your articles in a location such as {slug}/index.
html and link to them as {slug} for clean URLs (see example below). These settings give you the flexibility to
place your articles and pages anywhere you want.

Note: If a *_SAVE_AS setting contains a parent directory that doesn’t match the parent directory inside the corre-
sponding *_URL setting, this may cause Pelican to generate unexpected URLs in a few cases, such as when using the
{attach} syntax.

If you don’t want that flexibility and instead prefer that your generated output paths mirror your source content’s
filesystem path hierarchy, try the following settings:

PATH_METADATA = '(?P<path_no_ext>.*)\..*'
ARTICLE_URL = ARTICLE_SAVE_AS = PAGE_URL = PAGE_SAVE_AS = '{path_no_ext}.html'

Otherwise, you can use a variety of file metadata attributes within URL-related settings:

• slug

• date

• lang

• author

• category

Example usage:

ARTICLE_URL = 'posts/{date:%Y}/{date:%b}/{date:%d}/{slug}/'
ARTICLE_SAVE_AS = 'posts/{date:%Y}/{date:%b}/{date:%d}/{slug}/index.html'
PAGE_URL = 'pages/{slug}/'
PAGE_SAVE_AS = 'pages/{slug}/index.html'

This would save your articles into something like /posts/2011/Aug/07/sample-post/index.html, save
your pages into /pages/about/index.html, and render them available at URLs of /posts/2011/Aug/07/
sample-post/ and /pages/about/, respectively.

Note: If you specify a datetime directive, it will be substituted using the input files’ date metadata attribute. If the
date is not specified for a particular file, Pelican will rely on the file’s mtime timestamp. Check the Python datetime
documentation for more information.

RELATIVE_URLS = False
Defines whether Pelican should use document-relative URLs or not. Only set this to True when develop-
ing/testing and only if you fully understand the effect it can have on links/feeds.

ARTICLE_URL = '{slug}.html'
The URL to refer to an article.

ARTICLE_SAVE_AS = '{slug}.html'
The place where we will save an article.

ARTICLE_LANG_URL = '{slug}-{lang}.html'
The URL to refer to an article which doesn’t use the default language.
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ARTICLE_LANG_SAVE_AS = '{slug}-{lang}.html'
The place where we will save an article which doesn’t use the default language.

DRAFT_URL = 'drafts/{slug}.html'
The URL to refer to an article draft.

DRAFT_SAVE_AS = 'drafts/{slug}.html'
The place where we will save an article draft.

DRAFT_LANG_URL = 'drafts/{slug}-{lang}.html'
The URL to refer to an article draft which doesn’t use the default language.

DRAFT_LANG_SAVE_AS = 'drafts/{slug}-{lang}.html'
The place where we will save an article draft which doesn’t use the default language.

PAGE_URL = 'pages/{slug}.html'
The URL we will use to link to a page.

PAGE_SAVE_AS = 'pages/{slug}.html'
The location we will save the page. This value has to be the same as PAGE_URL or you need to use a rewrite
in your server config.

PAGE_LANG_URL = 'pages/{slug}-{lang}.html'
The URL we will use to link to a page which doesn’t use the default language.

PAGE_LANG_SAVE_AS = 'pages/{slug}-{lang}.html'
The location we will save the page which doesn’t use the default language.

DRAFT_PAGE_URL = 'drafts/pages/{slug}.html'
The URL used to link to a page draft.

DRAFT_PAGE_SAVE_AS = 'drafts/pages/{slug}.html'
The actual location a page draft is saved at.

DRAFT_PAGE_LANG_URL = 'drafts/pages/{slug}-{lang}.html'
The URL used to link to a page draft which doesn’t use the default language.

DRAFT_PAGE_LANG_SAVE_AS = 'drafts/pages/{slug}-{lang}.html'
The actual location a page draft which doesn’t use the default language is saved at.

AUTHOR_URL = 'author/{slug}.html'
The URL to use for an author.

AUTHOR_SAVE_AS = 'author/{slug}.html'
The location to save an author.

CATEGORY_URL = 'category/{slug}.html'
The URL to use for a category.

CATEGORY_SAVE_AS = 'category/{slug}.html'
The location to save a category.

TAG_URL = 'tag/{slug}.html'
The URL to use for a tag.

TAG_SAVE_AS = 'tag/{slug}.html'
The location to save the tag page.

Note: If you do not want one or more of the default pages to be created (e.g., you are the only author on your site and
thus do not need an Authors page), set the corresponding *_SAVE_AS setting to '' to prevent the relevant page from
being generated.
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Pelican can optionally create per-year, per-month, and per-day archives of your posts. These secondary archives are
disabled by default but are automatically enabled if you supply format strings for their respective _SAVE_AS settings.
Period archives fit intuitively with the hierarchical model of web URLs and can make it easier for readers to navigate
through the posts you’ve written over time.

Example usage:

YEAR_ARCHIVE_SAVE_AS = 'posts/{date:%Y}/index.html'
MONTH_ARCHIVE_SAVE_AS = 'posts/{date:%Y}/{date:%b}/index.html'

With these settings, Pelican will create an archive of all your posts for the year at (for instance) posts/2011/
index.html and an archive of all your posts for the month at posts/2011/Aug/index.html.

Note: Period archives work best when the final path segment is index.html. This way a reader can remove a
portion of your URL and automatically arrive at an appropriate archive of posts, without having to specify a page
name.

YEAR_ARCHIVE_URL = ''
The URL to use for per-year archives of your posts. Used only if you have the {url} placeholder in
PAGINATION_PATTERNS.

YEAR_ARCHIVE_SAVE_AS = ''
The location to save per-year archives of your posts.

MONTH_ARCHIVE_URL = ''
The URL to use for per-month archives of your posts. Used only if you have the {url} placeholder in
PAGINATION_PATTERNS.

MONTH_ARCHIVE_SAVE_AS = ''
The location to save per-month archives of your posts.

DAY_ARCHIVE_URL = ''
The URL to use for per-day archives of your posts. Used only if you have the {url} placeholder in
PAGINATION_PATTERNS.

DAY_ARCHIVE_SAVE_AS = ''
The location to save per-day archives of your posts.

DIRECT_TEMPLATES work a bit differently than noted above. Only the _SAVE_AS settings are available, but it is
available for any direct template.

ARCHIVES_SAVE_AS = 'archives.html'
The location to save the article archives page.

AUTHORS_SAVE_AS = 'authors.html'
The location to save the author list.

CATEGORIES_SAVE_AS = 'categories.html'
The location to save the category list.

TAGS_SAVE_AS = 'tags.html'
The location to save the tag list.

INDEX_SAVE_AS = 'index.html'
The location to save the list of all articles.

URLs for direct template pages are theme-dependent. Some themes use corresponding *_URL setting as string, while
others hard-code them: 'archives.html', 'authors.html', 'categories.html', 'tags.html'.
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SLUGIFY_SOURCE = 'title'
Specifies from where you want the slug to be automatically generated. Can be set to title to use the “Title:”
metadata tag or basename to use the article’s file name when creating the slug.

SLUGIFY_USE_UNICODE = False
Allow Unicode characters in slugs. Set True to keep Unicode characters in auto-generated slugs. Otherwise,
Unicode characters will be replaced with ASCII equivalents.

SLUGIFY_PRESERVE_CASE = False
Preserve uppercase characters in slugs. Set True to keep uppercase characters from SLUGIFY_SOURCE as-is.

SLUG_REGEX_SUBSTITUTIONS = [
(r'[^\w\s-]', ''), # remove non-alphabetical/whitespace/'-' chars
(r'(?u)\A\s*', ''), # strip leading whitespace
(r'(?u)\s*\Z', ''), # strip trailing whitespace
(r'[-\s]+', '-'), # reduce multiple whitespace or '-' to single '-'
]

Regex substitutions to make when generating slugs of articles and pages. Specified as a list of pairs of (from,
to) which are applied in order, ignoring case. The default substitutions have the effect of removing non-
alphanumeric characters and converting internal whitespace to dashes. Apart from these substitutions, slugs
are always converted to lowercase ascii characters and leading and trailing whitespace is stripped. Useful for
backward compatibility with existing URLs.

AUTHOR_REGEX_SUBSTITUTIONS = SLUG_REGEX_SUBSTITUTIONS
Regex substitutions for author slugs. Defaults to SLUG_REGEX_SUBSTITUTIONS.

CATEGORY_REGEX_SUBSTITUTIONS = SLUG_REGEX_SUBSTITUTIONS
Regex substitutions for category slugs. Defaults to SLUG_REGEX_SUBSTITUTIONS.

TAG_REGEX_SUBSTITUTIONS = SLUG_REGEX_SUBSTITUTIONS
Regex substitutions for tag slugs. Defaults to SLUG_REGEX_SUBSTITUTIONS.

5.5.3 Time and Date

TIMEZONE
The timezone used in the date information, to generate Atom and RSS feeds.

If no timezone is defined, UTC is assumed. This means that the generated Atom and RSS feeds will contain
incorrect date information if your locale is not UTC.

Pelican issues a warning in case this setting is not defined, as it was not mandatory in previous versions.

Have a look at the wikipedia page to get a list of valid timezone values.

DEFAULT_DATE = None
The default date you want to use. If 'fs', Pelican will use the file system timestamp information (mtime) if
it can’t get date information from the metadata. If given any other string, it will be parsed by the same method
as article metadata. If set to a tuple object, the default datetime object will instead be generated by passing the
tuple to the datetime.datetime constructor.

DEFAULT_DATE_FORMAT = '%a %d %B %Y'
The default date format you want to use.

DATE_FORMATS = {}
If you manage multiple languages, you can set the date formatting here.

If no DATE_FORMATS are set, Pelican will fall back to DEFAULT_DATE_FORMAT. If you need to maintain
multiple languages with different date formats, you can set the DATE_FORMATS dictionary using the language
name (lang metadata in your post content) as the key.
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In addition to the standard C89 strftime format codes that are listed in Python datetime documentation, you can
use the - character between % and the format character to remove any leading zeros. For example, %d/%m/%Y
will output 01/01/2014 whereas %-d/%-m/%Y will result in 1/1/2014.

DATE_FORMATS = {
'en': '%a, %d %b %Y',
'jp': '%Y-%m-%d(%a)',

}

It is also possible to set different locale settings for each language by using a (locale, format) tuple as a
dictionary value which will override the LOCALE setting:

# On Unix/Linux
DATE_FORMATS = {

'en': ('en_US','%a, %d %b %Y'),
'jp': ('ja_JP','%Y-%m-%d(%a)'),

}

# On Windows
DATE_FORMATS = {

'en': ('usa','%a, %d %b %Y'),
'jp': ('jpn','%Y-%m-%d(%a)'),

}

LOCALE
Change the locale1. A list of locales can be provided here or a single string representing one locale. When
providing a list, all the locales will be tried until one works.

You can set locale to further control date format:

LOCALE = ('usa', 'jpn', # On Windows
'en_US', 'ja_JP' # On Unix/Linux

)

For a list of available locales refer to locales on Windows or on Unix/Linux, use the locale -a command;
see manpage locale(1) for more information.

5.5.4 Template pages

TEMPLATE_PAGES = None
A mapping containing template pages that will be rendered with the blog entries.

If you want to generate custom pages besides your blog entries, you can point any Jinja2 template file with a
path pointing to the file and the destination path for the generated file.

For instance, if you have a blog with three static pages — a list of books, your resume, and a contact page —
you could have:

TEMPLATE_PAGES = {'src/books.html': 'dest/books.html',
'src/resume.html': 'dest/resume.html',
'src/contact.html': 'dest/contact.html'}

TEMPLATE_EXTENSIONS = ['.html']
The extensions to use when looking up template files from template names.

1 Default is the system locale.
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DIRECT_TEMPLATES = ['index', 'authors', 'categories', 'tags', 'archives']
List of templates that are used directly to render content. Typically direct templates are used to generate index
pages for collections of content (e.g., category and tag index pages). If the author, category and tag collections
are not needed, set DIRECT_TEMPLATES = ['index', 'archives']

DIRECT_TEMPLATES are searched for over paths maintained in THEME_TEMPLATES_OVERRIDES.

5.5.5 Metadata

AUTHOR
Default author (usually your name).

DEFAULT_METADATA = {}
The default metadata you want to use for all articles and pages.

FILENAME_METADATA = r'(?P<date>d{4}-d{2}-d{2}).*'
The regexp that will be used to extract any metadata from the filename. All named groups that are matched will
be set in the metadata object. The default value will only extract the date from the filename.

For example, to extract both the date and the slug:

FILENAME_METADATA = r'(?P<date>\d{4}-\d{2}-\d{2})_(?P<slug>.*)'

See also SLUGIFY_SOURCE.

PATH_METADATA = ''
Like FILENAME_METADATA, but parsed from a page’s full path relative to the content source directory.

EXTRA_PATH_METADATA = {}
Extra metadata dictionaries keyed by relative path. Relative paths require correct OS-specific directory separa-
tors (i.e. / in UNIX and \ in Windows) unlike some other Pelican file settings. Paths to a directory apply to all
files under it. The most-specific path wins conflicts.

Not all metadata needs to be embedded in source file itself . For example, blog posts are often named following a
YYYY-MM-DD-SLUG.rst pattern, or nested into YYYY/MM/DD-SLUG directories. To extract metadata from the
filename or path, set FILENAME_METADATA or PATH_METADATA to regular expressions that use Python’s group
name notation (?P<name>...). If you want to attach additional metadata but don’t want to encode it in the path,
you can set EXTRA_PATH_METADATA:

EXTRA_PATH_METADATA = {
'relative/path/to/file-1': {

'key-1a': 'value-1a',
'key-1b': 'value-1b',
},

'relative/path/to/file-2': {
'key-2': 'value-2',
},

}

This can be a convenient way to shift the installed location of a particular file:

# Take advantage of the following defaults
# STATIC_SAVE_AS = '{path}'
# STATIC_URL = '{path}'
STATIC_PATHS = [

'static/robots.txt',
]

EXTRA_PATH_METADATA = {

(continues on next page)
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(continued from previous page)

'static/robots.txt': {'path': 'robots.txt'},
}

5.5.6 Feed settings

By default, Pelican uses Atom feeds. However, it is also possible to use RSS feeds if you prefer.

Pelican generates category feeds as well as feeds for all your articles. It does not generate feeds for tags by default,
but it is possible to do so using the TAG_FEED_ATOM and TAG_FEED_RSS settings:

FEED_DOMAIN = None, i.e. base URL is "/"
The domain prepended to feed URLs. Since feed URLs should always be absolute, it is highly recommended to
define this (e.g., “https://feeds.example.com”). If you have already explicitly defined SITEURL (see above) and
want to use the same domain for your feeds, you can just set: FEED_DOMAIN = SITEURL.

FEED_ATOM = None, i.e. no Atom feed
The location to save the Atom feed.

FEED_ATOM_URL = None
Relative URL of the Atom feed. If not set, FEED_ATOM is used both for save location and URL.

FEED_RSS = None, i.e. no RSS
The location to save the RSS feed.

FEED_RSS_URL = None
Relative URL of the RSS feed. If not set, FEED_RSS is used both for save location and URL.

FEED_ALL_ATOM = 'feeds/all.atom.xml'
The location to save the all-posts Atom feed: this feed will contain all posts regardless of their language.

FEED_ALL_ATOM_URL = None
Relative URL of the all-posts Atom feed. If not set, FEED_ALL_ATOM is used both for save location and URL.

FEED_ALL_RSS = None, i.e. no all-posts RSS
The location to save the the all-posts RSS feed: this feed will contain all posts regardless of their language.

FEED_ALL_RSS_URL = None
Relative URL of the all-posts RSS feed. If not set, FEED_ALL_RSS is used both for save location and URL.

CATEGORY_FEED_ATOM = 'feeds/{slug}.atom.xml'
The location to save the category Atom feeds.2

CATEGORY_FEED_ATOM_URL = None
Relative URL of the category Atom feeds, including the {slug} placeholder.2 If not set,
CATEGORY_FEED_ATOM is used both for save location and URL.

CATEGORY_FEED_RSS = None, i.e. no RSS
The location to save the category RSS feeds, including the {slug} placeholder.2

CATEGORY_FEED_RSS_URL = None
Relative URL of the category RSS feeds, including the {slug} placeholder.2 If not set,
CATEGORY_FEED_RSS is used both for save location and URL.

AUTHOR_FEED_ATOM = 'feeds/{slug}.atom.xml'
The location to save the author Atom feeds.2

2 {slug} is replaced by name of the category / author / tag.

38 Chapter 5. Documentation

https://feeds.example.com


Pelican Documentation, Release 4.5.0

AUTHOR_FEED_ATOM_URL = None
Relative URL of the author Atom feeds, including the {slug} placeholder.2 If not set, AUTHOR_FEED_ATOM
is used both for save location and URL.

AUTHOR_FEED_RSS = 'feeds/{slug}.rss.xml'
The location to save the author RSS feeds.2

AUTHOR_FEED_RSS_URL = None
Relative URL of the author RSS feeds, including the {slug} placeholder.2 If not set, AUTHOR_FEED_RSS is
used both for save location and URL.

TAG_FEED_ATOM = None, i.e. no tag feed
The location to save the tag Atom feed, including the {slug} placeholder.2

TAG_FEED_ATOM_URL = None
Relative URL of the tag Atom feed, including the {slug} placeholder.2

TAG_FEED_RSS = None, i.e. no RSS tag feed
Relative URL to output the tag RSS feed, including the {slug} placeholder. If not set, TAG_FEED_RSS is
used both for save location and URL.

FEED_MAX_ITEMS
Maximum number of items allowed in a feed. Feed item quantity is unrestricted by default.

RSS_FEED_SUMMARY_ONLY = True
Only include item summaries in the description tag of RSS feeds. If set to False, the full content will be
included instead. This setting doesn’t affect Atom feeds, only RSS ones.

If you don’t want to generate some or any of these feeds, set the above variables to None.

5.5.7 Pagination

The default behaviour of Pelican is to list all the article titles along with a short description on the index page. While
this works well for small-to-medium sites, sites with a large quantity of articles will probably benefit from paginating
this list.

You can use the following settings to configure the pagination.

DEFAULT_ORPHANS = 0
The minimum number of articles allowed on the last page. Use this when you don’t want the last page to only
contain a handful of articles.

DEFAULT_PAGINATION = False
The maximum number of articles to include on a page, not including orphans. False to disable pagination.

PAGINATED_TEMPLATES = {'index': None, 'tag': None, 'category': None, 'author': None}
The templates to use pagination with, and the number of articles to include on a page. If this value is None, it
defaults to DEFAULT_PAGINATION.

PAGINATION_PATTERNS = (
(1, '{name}{extension}', '{name}{extension}'),
(2, '{name}{number}{extension}', '{name}{number}{extension}'),
)

A set of patterns that are used to determine advanced pagination output.
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Using Pagination Patterns

By default, pages subsequent to .../foo.html are created as .../foo2.html, etc. The
PAGINATION_PATTERNS setting can be used to change this. It takes a sequence of triples, where each
triple consists of:

(minimum_page, page_url, page_save_as,)

For page_url and page_save_as, you may use a number of variables. {url} and {save_as}
correspond respectively to the *_URL and *_SAVE_AS values of the corresponding page type (e.g.
ARTICLE_SAVE_AS). If {save_as} == foo/bar.html, then {name} == foo/bar and {extension}
== .html. {base_name} equals {name} except that it strips trailing /index if present. {number} equals the
page number.

For example, if you want to leave the first page unchanged, but place subsequent pages at .../page/2/ etc, you
could set PAGINATION_PATTERNS as follows:

PAGINATION_PATTERNS = (
(1, '{url}', '{save_as}'),
(2, '{base_name}/page/{number}/', '{base_name}/page/{number}/index.html'),

)

5.5.8 Translations

Pelican offers a way to translate articles. See the Content section for more information.

DEFAULT_LANG = 'en'
The default language to use.

ARTICLE_TRANSLATION_ID = 'slug'
The metadata attribute(s) used to identify which articles are translations of one another. May be a string or a
collection of strings. Set to None or False to disable the identification of translations.

PAGE_TRANSLATION_ID = 'slug'
The metadata attribute(s) used to identify which pages are translations of one another. May be a string or a
collection of strings. Set to None or False to disable the identification of translations.

TRANSLATION_FEED_ATOM = 'feeds/all-{lang}.atom.xml'
The location to save the Atom feed for translations.3

TRANSLATION_FEED_ATOM_URL = None
Relative URL of the Atom feed for translations, including the {lang} placeholder.3 If not set,
TRANSLATION_FEED_ATOM is used both for save location and URL.

TRANSLATION_FEED_RSS = None, i.e. no RSS
Where to put the RSS feed for translations.

TRANSLATION_FEED_RSS_URL = None
Relative URL of the RSS feed for translations, including the {lang} placeholder.3 If not set,
TRANSLATION_FEED_RSS is used both for save location and URL.

5.5.9 Ordering content

NEWEST_FIRST_ARCHIVES = True
Order archives by newest first by date. (False: orders by date with older articles first.)

3 {lang} is the language code
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REVERSE_CATEGORY_ORDER = False
Reverse the category order. (True: lists by reverse alphabetical order; default lists alphabetically.)

ARTICLE_ORDER_BY = 'reversed-date'
Defines how the articles (articles_page.object_list in the template) are sorted. Valid options are:
metadata as a string (use reversed- prefix the reverse the sort order), special option 'basename' which
will use the basename of the file (without path) or a custom function to extract the sorting key from articles. The
default value, 'reversed-date', will sort articles by date in reverse order (i.e. newest article comes first).

PAGE_ORDER_BY = 'basename'
Defines how the pages (pages variable in the template) are sorted. Options are same as
ARTICLE_ORDER_BY. The default value, 'basename' will sort pages by their basename.

5.5.10 Themes

Creating Pelican themes is addressed in a dedicated section (see Creating themes). However, here are the settings that
are related to themes.

THEME
Theme to use to produce the output. Can be a relative or absolute path to a theme folder, or the name of a default
theme or a theme installed via pelican-themes (see below).

THEME_STATIC_DIR = 'theme'
Destination directory in the output path where Pelican will place the files collected from
THEME_STATIC_PATHS. Default is theme.

THEME_STATIC_PATHS = ['static']
Static theme paths you want to copy. Default value is static, but if your theme has other static paths, you can put
them here. If files or directories with the same names are included in the paths defined in this settings, they will
be progressively overwritten.

THEME_TEMPLATES_OVERRIDES = []
A list of paths you want Jinja2 to search for templates before searching the theme’s templates/ directory.
Allows for overriding individual theme template files without having to fork an existing theme. Jinja2 searches
in the following order: files in THEME_TEMPLATES_OVERRIDES first, then the theme’s templates/.

You can also extend templates from the theme using the {% extends %} directive utilizing the !theme
prefix as shown in the following example:

{% extends '!theme/article.html' %}

CSS_FILE = 'main.css'
Specify the CSS file you want to load.

By default, two themes are available. You can specify them using the THEME setting or by passing the -t option to
the pelican command:

• notmyidea

• simple (a synonym for “plain text” :)

There are a number of other themes available at https://github.com/getpelican/pelican-themes. Pelican comes with
pelican-themes, a small script for managing themes.

You can define your own theme, either by starting from scratch or by duplicating and modifying a pre-existing theme.
Here is a guide on how to create your theme.

Following are example ways to specify your preferred theme:
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# Specify name of a built-in theme
THEME = "notmyidea"
# Specify name of a theme installed via the pelican-themes tool
THEME = "chunk"
# Specify a customized theme, via path relative to the settings file
THEME = "themes/mycustomtheme"
# Specify a customized theme, via absolute path
THEME = "/home/myuser/projects/mysite/themes/mycustomtheme"

The built-in notmyidea theme can make good use of the following settings. Feel free to use them in your themes as
well.

SITESUBTITLE
A subtitle to appear in the header.

DISQUS_SITENAME
Pelican can handle Disqus comments. Specify the Disqus sitename identifier here.

GITHUB_URL
Your GitHub URL (if you have one). It will then use this information to create a GitHub ribbon.

GOOGLE_ANALYTICS
Set to UA-XXXXX-Y Property’s tracking ID to activate Google Analytics.

GA_COOKIE_DOMAIN
Set cookie domain field of Google Analytics tracking code. Defaults to auto.

GOSQUARED_SITENAME
Set to ‘XXX-YYYYYY-X’ to activate GoSquared.

MENUITEMS
A list of tuples (Title, URL) for additional menu items to appear at the beginning of the main menu.

LINKS
A list of tuples (Title, URL) for links to appear on the header.

SOCIAL
A list of tuples (Title, URL) to appear in the “social” section.

TWITTER_USERNAME
Allows for adding a button to articles to encourage others to tweet about them. Add your Twitter username if
you want this button to appear.

LINKS_WIDGET_NAME
Allows override of the name of the links widget. If not specified, defaults to “links”.

SOCIAL_WIDGET_NAME
Allows override of the name of the “social” widget. If not specified, defaults to “social”.

In addition, you can use the “wide” version of the notmyidea theme by adding the following to your configuration:

CSS_FILE = "wide.css"

5.5.11 Logging

Sometimes, a long list of warnings may appear during site generation. Finding the meaningful error message in the
middle of tons of annoying log output can be quite tricky. In order to filter out redundant log messages, Pelican comes
with the LOG_FILTER setting.
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LOG_FILTER should be a list of tuples (level, msg), each of them being composed of the logging level (up to
warning) and the message to be ignored. Simply populate the list with the log messages you want to hide, and they
will be filtered out.

For example:

import logging
LOG_FILTER = [(logging.WARN, 'TAG_SAVE_AS is set to False')]

It is possible to filter out messages by a template. Check out source code to obtain a template.

For example:

import logging
LOG_FILTER = [(logging.WARN, 'Empty alt attribute for image %s in %s')]

Warning: Silencing messages by templates is a dangerous feature. It is possible to unintentionally filter out
multiple message types with the same template (including messages from future Pelican versions). Proceed with
caution.

Note: This option does nothing if --debug is passed.

5.5.12 Reading only modified content

To speed up the build process, Pelican can optionally read only articles and pages with modified content.

When Pelican is about to read some content source file:

1. The hash or modification time information for the file from a previous build are loaded from a cache file if
LOAD_CONTENT_CACHE is True. These files are stored in the CACHE_PATH directory. If the file has no
record in the cache file, it is read as usual.

2. The file is checked according to CHECK_MODIFIED_METHOD:

• If set to 'mtime', the modification time of the file is checked.

• If set to a name of a function provided by the hashlib module, e.g. 'md5', the file hash is checked.

• If set to anything else or the necessary information about the file cannot be found in the cache file, the
content is read as usual.

3. If the file is considered unchanged, the content data saved in a previous build corresponding to the file is loaded
from the cache, and the file is not read.

4. If the file is considered changed, the file is read and the new modification information and the content data are
saved to the cache if CACHE_CONTENT is True.

If CONTENT_CACHING_LAYER is set to 'reader' (the default), the raw content and metadata returned by a
reader are cached. If this setting is instead set to 'generator', the processed content object is cached. Caching
the processed content object may conflict with plugins (as some reading related signals may be skipped) and the
WITH_FUTURE_DATES functionality (as the draft status of the cached content objects would not change automat-
ically over time).

Checking modification times is faster than comparing file hashes, but it is not as reliable because mtime information
can be lost, e.g., when copying content source files using the cp or rsync commands without the mtime preservation
mode (which for rsync can be invoked by passing the --archive flag).
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The cache files are Python pickles, so they may not be readable by different versions of Python as the pickle format
often changes. If such an error is encountered, it is caught and the cache file is rebuilt automatically in the new format.
The cache files will also be rebuilt after the GZIP_CACHE setting has been changed.

The --ignore-cache command-line option is useful when the whole cache needs to be regenerated, such as
when making modifications to the settings file that will affect the cached content, or just for debugging purposes.
When Pelican runs in autoreload mode, modification of the settings file will make it ignore the cache automatically if
AUTORELOAD_IGNORE_CACHE is True.

Note that even when using cached content, all output is always written, so the modification times of the generated
*.html files will always change. Therefore, rsync-based uploading may benefit from the --checksum option.

5.5.13 Writing only selected content

When only working on a single article or page, or making tweaks to your theme, it is often desirable to generate
and review your work as quickly as possible. In such cases, generating and writing the entire site output is often
unnecessary. By specifying only the desired files as output paths in the WRITE_SELECTED list, only those files will
be written. This list can be also specified on the command line using the --write-selected option, which accepts
a comma-separated list of output file paths. By default this list is empty, so all output is written. See Site generation
for more details.

5.5.14 Example settings

AUTHOR = 'Alexis Métaireau'
SITENAME = "Alexis' log"
SITESUBTITLE = 'A personal blog.'
SITEURL = 'http://blog.notmyidea.org'
TIMEZONE = "Europe/Paris"

# can be useful in development, but set to False when you're ready to publish
RELATIVE_URLS = True

GITHUB_URL = 'http://github.com/ametaireau/'
DISQUS_SITENAME = "blog-notmyidea"
REVERSE_CATEGORY_ORDER = True
LOCALE = "C"
DEFAULT_PAGINATION = 4
DEFAULT_DATE = (2012, 3, 2, 14, 1, 1)

FEED_ALL_RSS = 'feeds/all.rss.xml'
CATEGORY_FEED_RSS = 'feeds/{slug}.rss.xml'

LINKS = (('Biologeek', 'http://biologeek.org'),
('Filyb', "http://filyb.info/"),
('Libert-fr', "http://www.libert-fr.com"),
('N1k0', "http://prendreuncafe.com/blog/"),
('Tarek Ziadé', "http://ziade.org/blog"),
('Zubin Mithra', "http://zubin71.wordpress.com/"),)

SOCIAL = (('twitter', 'http://twitter.com/ametaireau'),
('lastfm', 'http://lastfm.com/user/akounet'),
('github', 'http://github.com/ametaireau'),)

# global metadata to all the contents
DEFAULT_METADATA = {'yeah': 'it is'}

(continues on next page)
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# path-specific metadata
EXTRA_PATH_METADATA = {

'extra/robots.txt': {'path': 'robots.txt'},
}

# static paths will be copied without parsing their contents
STATIC_PATHS = [

'images',
'extra/robots.txt',
]

# custom page generated with a jinja2 template
TEMPLATE_PAGES = {'pages/jinja2_template.html': 'jinja2_template.html'}

# there is no other HTML content
READERS = {'html': None}

# code blocks with line numbers
PYGMENTS_RST_OPTIONS = {'linenos': 'table'}

# foobar will not be used, because it's not in caps. All configuration keys
# have to be in caps
foobar = "barbaz"

5.6 Creating themes

To generate its HTML output, Pelican uses the Jinja templating engine due to its flexibility and straightforward syntax.
If you want to create your own theme, feel free to take inspiration from the “simple” theme.

To generate your site using a theme you have created (or downloaded manually and then modified), you can specify
that theme via the -t flag:

pelican content -s pelicanconf.py -t /projects/your-site/themes/your-theme

If you’d rather not specify the theme on every invocation, you can define THEME in your settings to point to the
location of your preferred theme.

5.6.1 Structure

To make your own theme, you must follow the following structure:

static
css
images

templates
archives.html // to display archives
period_archives.html // to display time-period archives
article.html // processed for each article
author.html // processed for each author
authors.html // must list all the authors
categories.html // must list all the categories
category.html // processed for each category

(continues on next page)
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index.html // the index (list all the articles)
page.html // processed for each page
tag.html // processed for each tag
tags.html // must list all the tags. Can be a tag cloud.

• static contains all the static assets, which will be copied to the output theme folder. The above filesystem layout
includes CSS and image folders, but those are just examples. Put what you need here.

• templates contains all the templates that will be used to generate the content. The template files listed above are
mandatory; you can add your own templates if it helps you keep things organized while creating your theme.

5.6.2 Templates and variables

The idea is to use a simple syntax that you can embed into your HTML pages. This document describes which
templates should exist in a theme, and which variables will be passed to each template at generation time.

All templates will receive the variables defined in your settings file, as long as they are in all-caps. You can access
them directly.

Common variables

All of these settings will be available to all templates.

Vari-
able

Description

out-
put_file

The name of the file currently being generated. For instance, when Pelican is rendering the home page,
output_file will be “index.html”.

arti-
cles

The list of articles, ordered descending by date. All the elements are Article objects, so you can access
their attributes (e.g. title, summary, author etc.). Sometimes this is shadowed (for instance, in the tags
page). You will then find info about it in the all_articles variable.

dates The same list of articles, but ordered by date, ascending.
drafts The list of draft articles
au-
thors

A list of (author, articles) tuples, containing all the authors and corresponding articles (values)

cate-
gories

A list of (category, articles) tuples, containing all the categories and corresponding articles (values)

tags A list of (tag, articles) tuples, containing all the tags and corresponding articles (values)
pages The list of pages
hid-
den_pages

The list of hidden pages

draft_pagesThe list of draft pages

Sorting

URL wrappers (currently categories, tags, and authors), have comparison methods that allow them to be easily sorted
by name:

{% for tag, articles in tags|sort %}

If you want to sort based on different criteria, Jinja’s sort command has a number of options.
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Date Formatting

Pelican formats the date according to your settings and locale (DATE_FORMATS/DEFAULT_DATE_FORMAT) and
provides a locale_date attribute. On the other hand, the date attribute will be a datetime object. If you need
custom formatting for a date different than your settings, use the Jinja filter strftime that comes with Pelican.
Usage is same as Python strftime format, but the filter will do the right thing and format your date according to the
locale given in your settings:

{{ article.date|strftime('%d %B %Y') }}

index.html

This is the home page or index of your blog, generated at index.html.

If pagination is active, subsequent pages will reside in index{number}.html.

Variable Description
articles_paginator A paginator object for the list of articles
articles_page The current page of articles
articles_previous_page The previous page of articles (None if page does not exist)
articles_next_page The next page of articles (None if page does not exist)
dates_paginator A paginator object for the article list, ordered by date, ascending.
dates_page The current page of articles, ordered by date, ascending.
dates_previous_page The previous page of articles, ordered by date, ascending (None if page does not exist)
dates_next_page The next page of articles, ordered by date, ascending (None if page does not exist)
page_name ‘index’ – useful for pagination links

author.html

This template will be processed for each of the existing authors, with output generated according to the
AUTHOR_SAVE_AS setting (Default: author/{slug}.html). If pagination is active, subsequent pages will
by default reside at author/{slug}{number}.html.

Variable Description
author The name of the author being processed
articles Articles by this author
dates Articles by this author, but ordered by date, ascending
articles_paginator A paginator object for the list of articles
articles_page The current page of articles
articles_previous_page The previous page of articles (None if page does not exist)
articles_next_page The next page of articles (None if page does not exist)
dates_paginator A paginator object for the article list, ordered by date, ascending.
dates_page The current page of articles, ordered by date, ascending.
dates_previous_page The previous page of articles, ordered by date, ascending (None if page does not exist)
dates_next_page The next page of articles, ordered by date, ascending (None if page does not exist)
page_name AUTHOR_URL where everything after {slug} is removed – useful for pagination links

category.html

This template will be processed for each of the existing categories, with output generated according to the
CATEGORY_SAVE_AS setting (Default: category/{slug}.html). If pagination is active, subsequent pages
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will by default reside at category/{slug}{number}.html.

Variable Description
category The name of the category being processed
articles Articles for this category
dates Articles for this category, but ordered by date, ascending
articles_paginator A paginator object for the list of articles
articles_page The current page of articles
arti-
cles_previous_page

The previous page of articles (None if page does not exist)

articles_next_page The next page of articles (None if page does not exist)
dates_paginator A paginator object for the list of articles, ordered by date, ascending
dates_page The current page of articles, ordered by date, ascending
dates_previous_page The previous page of articles, ordered by date, ascending (None if page does not exist)
dates_next_page The next page of articles, ordered by date, ascending (None if page does not exist)
page_name CATEGORY_URL where everything after {slug} is removed – useful for pagination links

article.html

This template will be processed for each article, with output generated according to the ARTICLE_SAVE_AS setting
(Default: {slug}.html). The following variables are available when rendering.

Variable Description
article The article object to be displayed
category The name of the category for the current article

Any metadata that you put in the header of the article source file will be available as fields on the article object.
The field name will be the same as the name of the metadata field, except in all-lowercase characters.

For example, you could add a field called FacebookImage to your article metadata, as shown below:

Title: I love Python more than music
Date: 2013-11-06 10:06
Tags: personal, python
Category: Tech
Slug: python-je-l-aime-a-mourir
Author: Francis Cabrel
FacebookImage: http://franciscabrel.com/images/pythonlove.png

This new metadata will be made available as article.facebookimage in your article.html template. This would allow
you, for example, to specify an image for the Facebook open graph tags that will change for each article:

<meta property="og:image" content="{{ article.facebookimage }}"/>

page.html

This template will be processed for each page, with output generated according to the PAGE_SAVE_AS setting (De-
fault: pages/{slug}.html). The following variables are available when rendering.

Variable Description
page The page object to be displayed. You can access its title, slug, and content.
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tag.html

This template will be processed for each tag, with output generated according to the TAG_SAVE_AS setting (Default:
tag/{slug}.html). If pagination is active, subsequent pages will by default reside at tag/{slug}{number}.
html.

Variable Description
tag The name of the tag being processed
articles Articles related to this tag
dates Articles related to this tag, but ordered by date, ascending
articles_paginator A paginator object for the list of articles
articles_page The current page of articles
articles_previous_page The previous page of articles (None if page does not exist)
articles_next_page The next page of articles (None if page does not exist)
dates_paginator A paginator object for the list of articles, ordered by date, ascending
dates_page The current page of articles, ordered by date, ascending
dates_previous_page The previous page of articles, ordered by date, ascending (None if page does not exist)
dates_next_page The next page of articles, ordered by date, ascending (None if page does not exist)
page_name TAG_URL where everything after {slug} is removed – useful for pagination links

period_archives.html

This template will be processed for each year of your posts if a path for YEAR_ARCHIVE_SAVE_AS is defined, each
month if MONTH_ARCHIVE_SAVE_AS is defined, and each day if DAY_ARCHIVE_SAVE_AS is defined.

Vari-
able

Description

pe-
riod

A tuple of the form (year, month, day) that indicates the current time period. year and day are numbers
while month is a string. This tuple only contains year if the time period is a given year. It contains both year
and month if the time period is over years and months and so on.

You can see an example of how to use period in the “simple” theme period_archives.html template.

5.6.3 Objects

Detail objects attributes that are available and useful in templates. Not all attributes are listed here, this is a selection
of attributes considered useful in a template.

Article

The string representation of an Article is the source_path attribute.
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Attribute Description
author The Author of this article.
authors A list of Authors of this article.
category The Category of this article.
content The rendered content of the article.
date Datetime object representing the article date.
date_format Either default date format or locale date format.
default_template Default template name.
in_default_lang Boolean representing if the article is written in the default language.
lang Language of the article.
locale_date Date formatted by the date_format.
metadata Article header metadata dict.
save_as Location to save the article page.
slug Page slug.
source_path Full system path of the article source file.
relative_source_path Relative path from PATH to the article source file.
status The article status, can be any of ‘published’ or ‘draft’.
summary Rendered summary content.
tags List of Tag objects.
template Template name to use for rendering.
title Title of the article.
translations List of translations Article objects.
url URL to the article page.

Author / Category / Tag

The string representation of those objects is the name attribute.

Attribute Description
name Name of this object1.
page_name Author page name.
save_as Location to save the author page.
slug Page slug.
url URL to the author page.

Page

The string representation of a Page is the source_path attribute.

1 for Author object, coming from :authors: or AUTHOR.
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Attribute Description
author The Author of this page.
content The rendered content of the page.
date Datetime object representing the page date.
date_format Either default date format or locale date format.
default_template Default template name.
in_default_lang Boolean representing if the article is written in the default language.
lang Language of the article.
locale_date Date formatted by the date_format.
metadata Page header metadata dict.
save_as Location to save the page.
slug Page slug.
source_path Full system path of the page source file.
relative_source_path Relative path from PATH to the page source file.
status The page status, can be any of ‘published’, ‘hidden’ or ‘draft’.
summary Rendered summary content.
tags List of Tag objects.
template Template name to use for rendering.
title Title of the page.
translations List of translations Article objects.
url URL to the page.

5.6.4 Feeds

The feed variables changed in 3.0. Each variable now explicitly lists ATOM or RSS in the name. ATOM is still the
default. Old themes will need to be updated. Here is a complete list of the feed variables:

FEED_ATOM
FEED_RSS
FEED_ALL_ATOM
FEED_ALL_RSS
CATEGORY_FEED_ATOM
CATEGORY_FEED_RSS
AUTHOR_FEED_ATOM
AUTHOR_FEED_RSS
TAG_FEED_ATOM
TAG_FEED_RSS
TRANSLATION_FEED_ATOM
TRANSLATION_FEED_RSS

5.6.5 Inheritance

Since version 3.0, Pelican supports inheritance from the simple theme, so you can re-use the simple theme tem-
plates in your own themes.

If one of the mandatory files in the templates/ directory of your theme is missing, it will be replaced by the
matching template from the simple theme. So if the HTML structure of a template in the simple theme is right
for you, you don’t have to write a new template from scratch.

You can also extend templates from the simple theme in your own themes by using the {% extends %} directive
as in the following example:
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{% extends "!simple/index.html" %} <!-- extends the ``index.html`` template from
→˓the ``simple`` theme -->

{% extends "index.html" %} <!-- "regular" extending -->

Example

With this system, it is possible to create a theme with just two files.

base.html

The first file is the templates/base.html template:

{% extends "!simple/base.html" %}

{% block head %}
{{ super() }}

<link rel="stylesheet" type="text/css" href="{{ SITEURL }}/theme/css/style.css" />
{% endblock %}

1. On the first line, we extend the base.html template from the simple theme, so we don’t have to rewrite the
entire file.

2. On the third line, we open the head block which has already been defined in the simple theme.

3. On the fourth line, the function super() keeps the content previously inserted in the head block.

4. On the fifth line, we append a stylesheet to the page.

5. On the last line, we close the head block.

This file will be extended by all the other templates, so the stylesheet will be linked from all pages.

style.css

The second file is the static/css/style.css CSS stylesheet:

body {
font-family : monospace ;
font-size : 100% ;
background-color : white ;
color : #111 ;
width : 80% ;
min-width : 400px ;
min-height : 200px ;
padding : 1em ;
margin : 5% 10% ;
border : thin solid gray ;
border-radius : 5px ;
display : block ;

}

a:link { color : blue ; text-decoration : none ; }
a:hover { color : blue ; text-decoration : underline ; }
a:visited { color : blue ; }

(continues on next page)
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h1 a { color : inherit !important }
h2 a { color : inherit !important }
h3 a { color : inherit !important }
h4 a { color : inherit !important }
h5 a { color : inherit !important }
h6 a { color : inherit !important }

pre {
margin : 2em 1em 2em 4em ;

}

#menu li {
display : inline ;

}

#post-list {
margin-bottom : 1em ;
margin-top : 1em ;

}

Download

You can download this example theme here.

5.7 Plugins

Beginning with version 3.0, Pelican supports plugins. Plugins are a way to add features to Pelican without having to
directly modify the Pelican core.

5.7.1 How to use plugins

Starting with version 4.5, Pelican moved to a new plugin structure utilizing namespace packages that can be easily
installed via Pip. Plugins supporting this structure will install under the namespace package pelican.plugins
and can be automatically discovered by Pelican. To see a list of plugins that are active in your environment, run:

pelican-plugins

If you leave the PLUGINS setting as default (None), Pelican will automatically discover namespace plugins and
register them. If, on the other hand, you specify a PLUGINS setting as a list of plugins, this auto-discovery will be
disabled. At that point, only the plugins you specify will be registered, and you must explicitly list any namespace
plugins as well.

If you are using the PLUGINS setting, you can specify plugins in two ways. The first method specifies plugins as a
list of strings. Namespace plugins can be specified either by their full names (pelican.plugins.myplugin) or
by their short names (myplugin):

PLUGINS = ['package.myplugin',
'namespace_plugin1',
'pelican.plugins.namespace_plugin2']

Alternatively, you can import them in your settings file and pass the modules:
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from package import myplugin
from pelican.plugins import namespace_plugin1, namespace_plugin2
PLUGINS = [myplugin, namespace_plugin1, namespace_plugin2]

Note: When experimenting with different plugins (especially the ones that deal with metadata and content) caching
may interfere and the changes may not be visible. In such cases disable caching with LOAD_CONTENT_CACHE =
False or use the --ignore-cache command-line switch.

If your plugins are not in an importable path, you can specify a list of paths via the PLUGIN_PATHS setting. As
shown in the following example, paths in the PLUGIN_PATHS list can be absolute or relative to the settings file:

PLUGIN_PATHS = ["plugins", "/srv/pelican/plugins"]
PLUGINS = ["assets", "liquid_tags", "sitemap"]

5.7.2 Where to find plugins

Namespace plugins can be found in the pelican-plugins organization as individual repositories. Legacy plugins are
located in the pelican-plugins repository and will be gradually phased out in favor of the namespace versions.

Please note that while we do our best to review and maintain these plugins, they are submitted by the Pelican commu-
nity and thus may have varying levels of support and interoperability.

5.7.3 How to create plugins

Plugins are based on the concept of signals. Pelican sends signals, and plugins subscribe to those signals. The list of
available signals is documented in a subsequent section.

The only rule to follow for plugins is to define a register callable, in which you map the signals to your plugin
logic. Let’s take a simple example:

import logging

from pelican import signals

log = logging.getLogger(__name__)

def test(sender):
log.debug("%s initialized !!", sender)

def register():
signals.initialized.connect(test)

Note: Signal receivers are weakly-referenced and thus must not be defined within your register callable or they
will be garbage-collected before the signal is emitted.

If multiple plugins connect to the same signal, there is no way to guarantee or control in which order the plugins will
be executed. This is a limitation inherited from Blinker, the dependency Pelican uses to implement signals.
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Namespace plugin structure

Namespace plugins must adhere to a certain structure in order to function properly. They need to be installable (i.e.
contain setup.py or equivalent) and have a folder structure as follows:

myplugin
pelican

plugins
myplugin

__init__.py
...

...
setup.py

It is crucial that pelican or pelican/plugins folder not contain an __init__.py file. In fact, it is best to
have those folders empty besides the listed folders in the above structure and keep your plugin related files contained
solely in the pelican/plugins/myplugin folder to avoid any issues.

To easily set up the proper structure, a cookiecutter template for plugins is provided. Refer to that project’s README
for instructions on how to use it.

5.7.4 List of signals

Here is the list of currently implemented signals:
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Signal Argu-
ments

Description

initialized pelican ob-
ject

finalized pelican ob-
ject

invoked after all the generators are executed and just before pelican exits useful for
custom post processing actions, such as: - minifying js/css assets. - notify/ping
search engines with an updated sitemap.

genera-
tor_init

generator invoked in the Generator.__init__

all_generators_finalizedgenerators invoked after all the generators are executed and before writing output
readers_init readers invoked in the Readers.__init__
arti-
cle_generator_context

arti-
cle_generator,
metadata

arti-
cle_generator_preread

arti-
cle_generator

invoked before a article is read in ArticlesGenerator.generate_context; use if code
needs to do something before every article is parsed

arti-
cle_generator_init

arti-
cle_generator

invoked in the ArticlesGenerator.__init__

arti-
cle_generator_pretaxonomy

arti-
cle_generator

invoked before categories and tags lists are created useful when e.g. modifying the
list of articles to be generated so that removed articles are not leaked in categories or
tags

arti-
cle_generator_finalized

arti-
cle_generator

invoked at the end of ArticlesGenerator.generate_context

arti-
cle_generator_write_article

arti-
cle_generator,
content

invoked before writing each article, the article is passed as content

arti-
cle_writer_finalized

arti-
cle_generator,
writer

invoked after all articles and related pages have been written, but before the article
generator is closed.

get_generators pelican ob-
ject

invoked in Pelican.get_generator_classes, can return a Generator, or several genera-
tors in a tuple or in a list.

get_writer pelican ob-
ject

invoked in Pelican.get_writer, can return a custom Writer.

page_generator_contextpage_generator,
metadata

page_generator_prereadpage_generatorinvoked before a page is read in PageGenerator.generate_context; use if code needs
to do something before every page is parsed.

page_generator_initpage_generatorinvoked in the PagesGenerator.__init__
page_generator_finalizedpage_generatorinvoked at the end of PagesGenerator.generate_context
page_generator_write_pagepage_generator,

content
invoked before writing each page, the page is passed as content

page_writer_finalizedpage_generator,
writer

invoked after all pages have been written, but before the page generator is closed.

static_generator_contextstatic_generator,
metadata

static_generator_prereadstatic_generatorinvoked before a static file is read in StaticGenerator.generate_context; use if code
needs to do something before every static file is added to the staticfiles list.

static_generator_initstatic_generatorinvoked in the StaticGenerator.__init__
static_generator_finalizedstatic_generatorinvoked at the end of StaticGenerator.generate_context
con-
tent_object_init

con-
tent_object

invoked at the end of Content.__init__

con-
tent_written

path, con-
text

invoked each time a content file is written.

feed_generated context,
feed

invoked each time a feed gets generated. Can be used to modify a feed object before
it gets written.

feed_written path, con-
text, feed

invoked each time a feed file is written.
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Warning: Avoid content_object_init signal if you intend to read summary or content properties of
the content object. That combination can result in unresolved links when Linking to internal content (see pelican-
plugins bug #314). Use _summary and _content properties instead, or, alternatively, run your plugin at a later
stage (e.g. all_generators_finalized).

Note: After Pelican 3.2, signal names were standardized. Older plugins may need to be updated to use the new
names:

Old name New name
article_generate_context article_generator_context
article_generate_finalized article_generator_finalized
article_generate_preread article_generator_preread
pages_generate_context page_generator_context
pages_generate_preread page_generator_preread
pages_generator_finalized page_generator_finalized
pages_generator_init page_generator_init
static_generate_context static_generator_context
static_generate_preread static_generator_preread

5.7.5 Recipes

We eventually realised some of the recipes to create plugins would be best shared in the documentation somewhere,
so here they are!

How to create a new reader

One thing you might want is to add support for your very own input format. While it might make sense to add this
feature in Pelican core, we wisely chose to avoid this situation and instead have the different readers defined via
plugins.

The rationale behind this choice is mainly that plugins are really easy to write and don’t slow down Pelican itself when
they’re not active.

No more talking — here is an example:

from pelican import signals
from pelican.readers import BaseReader

# Create a new reader class, inheriting from the pelican.reader.BaseReader
class NewReader(BaseReader):

enabled = True # Yeah, you probably want that :-)

# The list of file extensions you want this reader to match with.
# If multiple readers were to use the same extension, the latest will
# win (so the one you're defining here, most probably).
file_extensions = ['yeah']

# You need to have a read method, which takes a filename and returns
# some content and the associated metadata.

(continues on next page)
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def read(self, filename):
metadata = {'title': 'Oh yeah',

'category': 'Foo',
'date': '2012-12-01'}

parsed = {}
for key, value in metadata.items():

parsed[key] = self.process_metadata(key, value)

return "Some content", parsed

def add_reader(readers):
readers.reader_classes['yeah'] = NewReader

# This is how pelican works.
def register():

signals.readers_init.connect(add_reader)

Adding a new generator

Adding a new generator is also really easy. You might want to have a look at Pelican internals for more information
on how to create your own generator.

def get_generators(pelican_object):
# define a new generator here if you need to
return MyGenerator

def register():
signals.get_generators.connect(get_generators)

5.8 pelican-themes

5.8.1 Description

pelican-themes is a command line tool for managing themes for Pelican. See Themes for settings related to
themes.

Usage

pelican-themes [-h] [-l] [-i theme path [theme path . . . ]]
[-r theme name [theme name . . . ]]
[-s theme path [theme path . . . ]] [-v] [–version]

Optional arguments:

-h, --help Show the help an exit

-l, --list Show the themes already installed

-i theme_path, --install theme_path One or more themes to install
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-r theme_name, --remove theme_name One or more themes to remove

-s theme_path, --symlink theme_path Same as “–install”, but create a symbolic link instead of copy-
ing the theme. Useful for theme development

-v, --verbose Verbose output

--version Print the version of this script

5.8.2 Examples

Listing the installed themes

With pelican-themes, you can see the available themes by using the -l or --list option:

$ pelican-themes -l
notmyidea
two-column@
simple
$ pelican-themes --list
notmyidea
two-column@
simple

In this example, we can see there are three themes available: notmyidea, simple, and two-column.

two-column is prefixed with an @ because this theme is not copied to the Pelican theme path, but is instead just
linked to it (see Creating symbolic links for details about creating symbolic links).

Note that you can combine the --list option with the -v or --verbose option to get more verbose output, like
this:

$ pelican-themes -v -l
/usr/local/lib/python2.6/dist-packages/pelican-2.6.0-py2.6.egg/pelican/themes/
→˓notmyidea
/usr/local/lib/python2.6/dist-packages/pelican-2.6.0-py2.6.egg/pelican/themes/two-
→˓column (symbolic link to `/home/skami/Dev/Python/pelican-themes/two-column')
/usr/local/lib/python2.6/dist-packages/pelican-2.6.0-py2.6.egg/pelican/themes/simple

Installing themes

You can install one or more themes using the -i or --install option. This option takes as argument the path(s) of
the theme(s) you want to install, and can be combined with the verbose option:

# pelican-themes --install ~/Dev/Python/pelican-themes/notmyidea-cms --verbose

# pelican-themes --install ~/Dev/Python/pelican-themes/notmyidea-cms\
~/Dev/Python/pelican-themes/martyalchin \
--verbose

# pelican-themes -vi ~/Dev/Python/pelican-themes/two-column
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Removing themes

The pelican-themes command can also remove themes from the Pelican themes path. The -r or --remove
option takes as argument the name(s) of the theme(s) you want to remove, and can be combined with the --verbose
option.

# pelican-themes --remove two-column

# pelican-themes -r martyachin notmyidea-cmd -v

Creating symbolic links

pelican-themes can also install themes by creating symbolic links instead of copying entire themes into the
Pelican themes path.

To symbolically link a theme, you can use the -s or --symlink, which works exactly as the --install option:

# pelican-themes --symlink ~/Dev/Python/pelican-themes/two-column

In this example, the two-column theme is now symbolically linked to the Pelican themes path, so we can use it, but
we can also modify it without having to reinstall it after each modification.

This is useful for theme development:

$ sudo pelican-themes -s ~/Dev/Python/pelican-themes/two-column
$ pelican ~/Blog/content -o /tmp/out -t two-column
$ firefox /tmp/out/index.html
$ vim ~/Dev/Pelican/pelican-themes/two-column/static/css/main.css
$ pelican ~/Blog/content -o /tmp/out -t two-column
$ cp /tmp/bg.png ~/Dev/Pelican/pelican-themes/two-column/static/img/bg.png
$ pelican ~/Blog/content -o /tmp/out -t two-column
$ vim ~/Dev/Pelican/pelican-themes/two-column/templates/index.html
$ pelican ~/Blog/content -o /tmp/out -t two-column

Doing several things at once

The --install, --remove and --symlink option are not mutually exclusive, so you can combine them in the
same command line to do more than one operation at time, like this:

# pelican-themes --remove notmyidea-cms two-column \
--install ~/Dev/Python/pelican-themes/notmyidea-cms-fr \
--symlink ~/Dev/Python/pelican-themes/two-column \
--verbose

In this example, the theme notmyidea-cms is replaced by the theme notmyidea-cms-fr

5.9 Importing an existing site

5.9.1 Description

pelican-import is a command-line tool for converting articles from other software to reStructuredText or Mark-
down. The supported import formats are:
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• Blogger XML export

• Dotclear export

• Posterous API

• Tumblr API

• WordPress XML export

• RSS/Atom feed

The conversion from HTML to reStructuredText or Markdown relies on Pandoc. For Dotclear, if the source posts are
written with Markdown syntax, they will not be converted (as Pelican also supports Markdown).

Note: Unlike Pelican, Wordpress supports multiple categories per article. These are imported as a comma-
separated string. You have to resolve these manually, or use a plugin that enables multiple categories per article
(like more_categories).

5.9.2 Dependencies

pelican-import has some dependencies not required by the rest of Pelican:

• BeautifulSoup4 and lxml, for WordPress and Dotclear import. Can be installed like any other Python package
(pip install BeautifulSoup4 lxml).

• Feedparser, for feed import (pip install feedparser).

• Pandoc, see the Pandoc site for installation instructions on your operating system.

5.9.3 Usage

pelican-import [-h] [--blogger] [--dotclear] [--posterous] [--tumblr] [--wpfile] [--
→˓feed]

[-o OUTPUT] [-m MARKUP] [--dir-cat] [--dir-page] [--strip-raw] [--wp-
→˓custpost]

[--wp-attach] [--disable-slugs] [-e EMAIL] [-p PASSWORD] [-b BLOGNAME]
input|api_token|api_key

Positional arguments

input The input file to read
api_token (Posterous only) api_token can be obtained from http://posterous.com/api/
api_key (Tumblr only) api_key can be obtained from https://www.tumblr.com/oauth/apps

Optional arguments

-h, --help Show this help message and exit

--blogger Blogger XML export (default: False)

--dotclear Dotclear export (default: False)

--posterous Posterous API (default: False)
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--tumblr Tumblr API (default: False)

--wpfile WordPress XML export (default: False)

--feed Feed to parse (default: False)

-o OUTPUT, --output OUTPUT Output path (default: content)

-m MARKUP, --markup MARKUP Output markup format: rst, markdown, or
asciidoc (default: rst)

--dir-cat Put files in directories with categories name (default: False)

--dir-page Put files recognised as pages in “pages/” sub- directory (blogger and
wordpress import only) (default: False)

--filter-author Import only post from the specified author

--strip-raw Strip raw HTML code that can’t be converted to markup such as flash
embeds or iframes (wordpress import only) (default: False)

--wp-custpost Put wordpress custom post types in directories. If used with –dir-cat
option directories will be created as “/post_type/category/” (word-
press import only)

--wp-attach Download files uploaded to wordpress as attachments. Files will
be added to posts as a list in the post header and links to the files
within the post will be updated. All files will be downloaded, even
if they aren’t associated with a post. Files will be downloaded
with their original path inside the output directory, e.g. “output/wp-
uploads/date/postname/file.jpg”. (wordpress import only) (requires
an internet connection)

--disable-slugs Disable storing slugs from imported posts within output. With this
disabled, your Pelican URLs may not be consistent with your origi-
nal posts. (default: False)

-e EMAIL, --email=EMAIL Email used to authenticate Posterous API

-p PASSWORD, --password=PASSWORD Password used to authenticate Posterous
API

-b BLOGNAME, --blogname=BLOGNAME Blog name used in Tumblr API

5.9.4 Examples

For Blogger:

$ pelican-import --blogger -o ~/output ~/posts.xml

For Dotclear:

$ pelican-import --dotclear -o ~/output ~/backup.txt

for Posterous:

$ pelican-import --posterous -o ~/output --email=<email_address> --password=<password>
→˓ <api_token>

For Tumblr:
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$ pelican-import --tumblr -o ~/output --blogname=<blogname> <api_token>

For WordPress:

$ pelican-import --wpfile -o ~/output ~/posts.xml

5.9.5 Tests

To test the module, one can use sample files:

• for WordPress: https://www.wpbeginner.com/wp-themes/how-to-add-dummy-content-for-theme-development-in-wordpress/

• for Dotclear: http://media.dotaddict.org/tda/downloads/lorem-backup.txt

5.10 Frequently Asked Questions (FAQ)

Here are some frequently asked questions about Pelican.

5.10.1 What’s the best way to communicate a problem, question, or suggestion?

Please read our feedback guidelines.

5.10.2 How can I help?

There are several ways to help out. First, you can report any Pelican suggestions or problems you might have via IRC
(preferred) or the issue tracker. If submitting an issue report, please first check the existing issue list (both open and
closed) in order to avoid submitting a duplicate issue.

If you want to contribute, please fork the git repository, create a new feature branch, make your changes, and issue a
pull request. Someone will review your changes as soon as possible. Please refer to the How to Contribute section for
more details.

You can also contribute by creating themes and improving the documentation.

5.10.3 Is the Pelican settings file mandatory?

Configuration files are optional and are just an easy way to configure Pelican. For basic operations, it’s possible to
specify options while invoking Pelican via the command line. See pelican --help for more information.

5.10.4 Changes to the settings file take no effect

When experimenting with different settings (especially the metadata ones) caching may interfere and the changes may
not be visible. In such cases, ensure that caching is disabled via LOAD_CONTENT_CACHE = False or use the
--ignore-cache command-line switch.
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5.10.5 I’m creating my own theme. How do I use Pygments for syntax highlighting?

Pygments adds some classes to the generated content. These classes are used by themes to style code syntax high-
lighting via CSS. Specifically, you can customize the appearance of your syntax highlighting via the .highlight
pre class in your theme’s CSS file. To see how various styles can be used to render Django code, for example, use
the style selector drop-down at top-right on the Pygments project demo site.

You can use the following example commands to generate a starting CSS file from a Pygments built-in style (in this
case, “monokai”) and then copy the generated CSS file to your new theme:

pygmentize -S monokai -f html -a .highlight > pygment.css
cp pygment.css path/to/theme/static/css/

Don’t forget to import your pygment.css file from your main CSS file.

5.10.6 How do I create my own theme?

Please refer to Creating themes.

5.10.7 I want to use Markdown, but I got an error.

If you try to generate Markdown content without first installing the Markdown library, may see a message that says No
valid files found in content. Markdown is not a hard dependency for Pelican, so if you have content in
Markdown format, you will need to explicitly install the Markdown library. You can do so by typing the following
command, prepending sudo if permissions require it:

python -m pip install markdown

5.10.8 Can I use arbitrary metadata in my templates?

Yes. For example, to include a modified date in a Markdown post, one could include the following at the top of the
article:

Modified: 2012-08-08

For reStructuredText, this metadata should of course be prefixed with a colon:

:Modified: 2012-08-08

This metadata can then be accessed in templates such as article.html via:

{% if article.modified %}
Last modified: {{ article.modified }}
{% endif %}

If you want to include metadata in templates outside the article context (e.g., base.html), the if statement should
instead be:

{% if article and article.modified %}

64 Chapter 5. Documentation

https://pygments.org/demo/


Pelican Documentation, Release 4.5.0

5.10.9 How do I assign custom templates on a per-page basis?

It’s as simple as adding an extra line of metadata to any page or article that you want to have its own template. For
example, this is how it would be handled for content in reST format:

:template: template_name

For content in Markdown format:

Template: template_name

Then just make sure your theme contains the relevant template file (e.g. template_name.html).

5.10.10 How can I override the generated URL of a specific page or article?

Include url and save_as metadata in any pages or articles that you want to override the generated URL. Here is an
example page in reST format:

Override url/save_as page
#########################

:url: override/url/
:save_as: override/url/index.html

With this metadata, the page will be written to override/url/index.html and Pelican will use url override/
url/ to link to this page.

5.10.11 How can I use a static page as my home page?

The override feature mentioned above can be used to specify a static page as your home page. The following Mark-
down example could be stored in content/pages/home.md:

Title: Welcome to My Site
URL:
save_as: index.html

Thank you for visiting. Welcome!

If the original blog index is still wanted, it can then be saved in a different location by setting INDEX_SAVE_AS =
'blog_index.html' for the 'index' direct template.

5.10.12 What if I want to disable feed generation?

To disable feed generation, all feed settings should be set to None. All but three feed settings already default to None,
so if you want to disable all feed generation, you only need to specify the following settings:

FEED_ALL_ATOM = None
CATEGORY_FEED_ATOM = None
TRANSLATION_FEED_ATOM = None
AUTHOR_FEED_ATOM = None
AUTHOR_FEED_RSS = None

The word None should not be surrounded by quotes. Please note that None and '' are not the same thing.
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5.10.13 I’m getting a warning about feeds generated without SITEURL being set
properly

RSS and Atom feeds require all URL links to be absolute. In order to properly generate links in Pelican you will need
to set SITEURL to the full path of your site.

Feeds are still generated when this warning is displayed, but links within may be malformed and thus the feed may
not validate.

5.10.14 My feeds are broken since I upgraded to Pelican 3.x

Starting in 3.0, some of the FEED setting names were changed to more explicitly refer to the Atom feeds they inher-
ently represent (much like the FEED_RSS setting names). Here is an exact list of the renamed settings:

FEED -> FEED_ATOM
TAG_FEED -> TAG_FEED_ATOM
CATEGORY_FEED -> CATEGORY_FEED_ATOM

Starting in 3.1, the new feed FEED_ALL_ATOM has been introduced: this feed will aggregate all posts regardless
of their language. This setting generates 'feeds/all.atom.xml' by default and FEED_ATOM now defaults to
None. The following feed setting has also been renamed:

TRANSLATION_FEED -> TRANSLATION_FEED_ATOM

Older themes that referenced the old setting names may not link properly. In order to rectify this, please update your
theme for compatibility by changing the relevant values in your template files. For an example of complete feed
headers and usage please check out the simple theme.

5.10.15 Is Pelican only suitable for blogs?

No. Pelican can be easily configured to create and maintain any type of static site. This may require a little cus-
tomization of your theme and Pelican configuration. For example, if you are building a launch site for your product
and do not need tags on your site, you could remove the relevant HTML code from your theme. You can also disable
generation of tag-related pages via:

TAGS_SAVE_AS = ''
TAG_SAVE_AS = ''

5.10.16 Why does Pelican always write all HTML files even with content caching
enabled?

In order to reliably determine whether the HTML output is different before writing it, a large part of the generation
environment including the template contexts, imported plugins, etc. would have to be saved and compared, at least in
the form of a hash (which would require special handling of unhashable types), because of all the possible combina-
tions of plugins, pagination, etc. which may change in many different ways. This would require a lot more processing
time and memory and storage space. Simply writing the files each time is a lot faster and a lot more reliable.

However, this means that the modification time of the files changes every time, so a rsync based upload will transfer
them even if their content hasn’t changed. A simple solution is to make rsync use the --checksum option, which
will make it compare the file checksums in a much faster way than Pelican would.

When only several specific output files are of interest (e.g. when working on some specific page or the theme tem-
plates), the WRITE_SELECTED option may help, see Writing only selected content.
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5.10.17 How to process only a subset of all articles?

It is often useful to process only e.g. 10 articles for debugging purposes. This can be achieved by explicitly specifying
only the filenames of those articles in ARTICLE_PATHS. A list of such filenames could be found using a command
similar to cd content; find -name '*.md' | head -n 10.

5.10.18 My tag-cloud is missing/broken since I upgraded Pelican

In an ongoing effort to steamline Pelican, tag_cloud generation has been moved out of the pelican core and into a
separate plugin. See the Plugins documentation further information about the Pelican plugin system.

5.10.19 Since I upgraded Pelican my pages are no longer rendered

Pages were available to themes as lowercase pages and uppercase PAGES. To bring this inline with the Templates
and variables section, PAGES has been removed. This is quickly resolved by updating your theme to iterate over
pages instead of PAGES. Just replace:

{% for pg in PAGES %}

with something like:

{% for pg in pages %}

5.10.20 How can I stop Pelican from trying to parse my static files as content?

Pelican’s article and page generators run before it’s static generator. That means if you use a setup similar to the default
configuration, where a static source directory is defined inside a *_PATHS setting, all files that have a valid content
file ending (.html, .rst, .md, . . . ) will be treated as articles or pages before they get treated as static files.

To circumvent this issue either use the appropriate *_EXCLUDES setting or disable the offending reader via READERS
if you don’t need it.

5.10.21 Why is [arbitrary Markdown syntax] not supported?

Pelican does not directly handle Markdown processing and instead delegates that task to the Python-Markdown project,
the core of which purposefully follows the original Markdown syntax rules and not the myriad Markdown “flavors”
that have subsequently propagated. That said, Python-Markdown is quite modular, and the syntax you are looking for
may be provided by one of the many available Markdown Extensions. Alternatively, some folks have created Pelican
plugins that support Markdown variants, so that may be your best choice if there is a particular variant you want to use
when writing your content.

5.11 Tips

Here are some tips about Pelican that you might find useful.
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5.11.1 Custom 404 Pages

When a browser requests a resource that the web server cannot find, the web server usually displays a generic “File
not found” (404) error page that can be stark and unsightly. One way to provide an error page that matches the
theme of your site is to create a custom 404 page (not an article), such as this Markdown-formatted example stored in
content/pages/404.md:

Title: Not Found
Status: hidden
Save_as: 404.html

The requested item could not be located. Perhaps you might want to check
the [Archives](/archives.html)?

The next step is to configure your web server to display this custom page instead of its default 404 page. For Nginx,
add the following to your configuration file’s location block:

error_page 404 /404.html;

For Apache:

ErrorDocument 404 /404.html

For Amazon S3, first navigate to the Static Site Hosting menu in the bucket settings on your AWS cosole.
From there:

Error Document: 404.html

5.11.2 Publishing to GitHub

GitHub Pages offer an easy and convenient way to publish Pelican sites. There are two types of GitHub Pages: Project
Pages and User Pages. Pelican sites can be published as both Project Pages and User Pages.

Project Pages

To publish a Pelican site as a Project Page you need to push the content of the output dir generated by Pelican to a
repository’s gh-pages branch on GitHub.

The excellent ghp-import, which can be installed with pip, makes this process really easy.

For example, if the source of your Pelican site is contained in a GitHub repository, and if you want to publish that
Pelican site in the form of Project Pages to this repository, you can then use the following:

$ pelican content -o output -s pelicanconf.py
$ ghp-import output -b gh-pages
$ git push origin gh-pages

The ghp-import output command updates the local gh-pages branch with the content of the output direc-
tory (creating the branch if it doesn’t already exist). The git push origin gh-pages command updates the
remote gh-pages branch, effectively publishing the Pelican site.

Note: The github target of the Makefile (and the gh_pages task of tasks.py) created by the
pelican-quickstart command publishes the Pelican site as Project Pages, as described above.
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User Pages

To publish a Pelican site in the form of User Pages, you need to push the content of the output dir generated by
Pelican to the master branch of your <username>.github.io repository on GitHub.

Again, you can take advantage of ghp-import:

$ pelican content -o output -s pelicanconf.py
$ ghp-import output -b gh-pages
$ git push git@github.com:elemoine/elemoine.github.io.git gh-pages:master

The git push command pushes the local gh-pages branch (freshly updated by the ghp-import command) to
the elemoine.github.io repository’s master branch on GitHub.

Note: To publish your Pelican site as User Pages, feel free to adjust the github target of the Makefile.

Another option for publishing to User Pages is to generate the output files in the root directory of the project.

For example, your main project folder is <username>.github.io and you can create the Pelican project in a
subdirectory called Pelican. Then from inside the Pelican folder you can run:

$ pelican content -o .. -s pelicanconf.py

Now you can push the whole project <username>.github.io to the master branch of your GitHub repository:

$ git push origin master

(assuming origin is set to your remote repository).

Custom 404 Pages

GitHub Pages will display the custom 404 page described above, as noted in the relevant GitHub docs.

Update your site on each commit

To automatically update your Pelican site on each commit, you can create a post-commit hook. For example, you can
add the following to .git/hooks/post-commit:

pelican content -o output -s pelicanconf.py && ghp-import output && git push origin
→˓gh-pages

Copy static files to the root of your site

To use a custom domain with GitHub Pages, you need to put the domain of your site (e.g., blog.example.com)
inside a CNAME file at the root of your site. To do this, create the content/extra/ directory and add a CNAME file
to it. Then use the STATIC_PATHS setting to tell Pelican to copy this file to your output directory. For example:

STATIC_PATHS = ['images', 'extra/CNAME']
EXTRA_PATH_METADATA = {'extra/CNAME': {'path': 'CNAME'},}

Note: use forward slashes, /, even on Windows.

You can also use the EXTRA_PATH_METADATA mechanism to place a favicon.ico or robots.txt at the root
of any site.
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5.11.3 How to add YouTube or Vimeo Videos

The easiest way is to paste the embed code of the video from these sites directly into your source content.

Alternatively, you can also use Pelican plugins like liquid_tags, pelican_youtube, or pelican_vimeo to
embed videos in your content.

Moreover, markup languages like reST and Markdown have plugins that let you embed videos in the markup. You can
use reST video directive for reST or mdx_video plugin for Markdown.

5.11.4 Develop Locally Using SSL

Here’s how you can set up your local pelican server to support SSL.

First, create a self-signed certificate and key using openssl (this creates cert.pem and key.pem):

$ openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365 -nodes

And use this command to launch the server (the server starts within your output directory):

python -m pelican.server 8443 --key=../key.pem --cert=../cert.pem

If you are using develop-server.sh, add this to the top:

CERT="$BASEDIR/cert.pem"
KEY="$BASEDIR/key.pem"

and modify the pelican.server line as follows:

$PY -m pelican.server $port --ssl --cert="$CERT" --key="$KEY" &

5.12 Contributing and feedback guidelines

There are many ways to contribute to Pelican. You can improve the documentation, add missing features, and fix bugs
(or just report them). You can also help out by reviewing and commenting on existing issues.

Don’t hesitate to fork Pelican and submit an issue or pull request on GitHub. When doing so, please consider the
following guidelines.

5.12.1 Filing issues

• Before you file an issue, try asking for help first.

• If determined to file an issue, first check for existing issues, including closed issues.

5.12.2 How to get help

Before you ask for help, please make sure you do the following:

1. Read the documentation thoroughly. If in a hurry, at least use the search field that is provided at top-left on the
documentation pages. Make sure you read the docs for the Pelican version you are using.

2. Use a search engine (e.g., DuckDuckGo, Google) to search for a solution to your problem. Someone may have
already found a solution, perhaps in the form of a plugin or a specific combination of settings.
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3. Try reproducing the issue in a clean environment, ensuring you are using:

• latest Pelican release (or an up-to-date Git clone of Pelican master)

• latest releases of libraries used by Pelican

• no plugins or only those related to the issue

NOTE: The most common sources of problems are anomalies in (1) themes, (2) settings files, and (3) make/invoke
automation wrappers. If you can’t reproduce your problem when using the following steps to generate your site, then
the problem is almost certainly with your chosen theme and/or settings file (and not Pelican itself):

cd ~/projects/your-site
git clone https://github.com/getpelican/pelican ~/projects/pelican
pelican content -s ~/projects/pelican/samples/pelican.conf.py -t ~/projects/pelican/
→˓pelican/themes/notmyidea

If despite the above efforts you still cannot resolve your problem, be sure to include in your inquiry the following
information, preferably in the form of links to content uploaded to a paste service, GitHub repository, or other publicly-
accessible location:

• Describe what version of Pelican you are running (output of pelican --version or the HEAD commit
hash if you cloned the repo) and how exactly you installed it (the full command you used, e.g. python -m
pip install pelican).

• If you are looking for a way to get some end result, prepare a detailed description of what the end result should
look like (preferably in the form of an image or a mock-up page) and explain in detail what you have done so
far to achieve it.

• If you are trying to solve some issue, prepare a detailed description of how to reproduce the problem. If the issue
cannot be easily reproduced, it cannot be debugged by developers or volunteers. Describe only the minimum
steps necessary to reproduce it (no extra plugins, etc.).

• Upload your settings file or any other custom code that would enable people to reproduce the problem or to see
what you have already tried to achieve the desired end result.

• Upload detailed and complete output logs and backtraces (remember to add the --debug flag: pelican
--debug content [...])

Once the above preparation is ready, you can contact people willing to help via (preferably) the #pelican IRC
channel or send a message to authors at getpelican dot com. Remember to include all the information
you prepared.

The #pelican IRC channel

• Because of differing time zones, you may not get an immediate response to your question, but please be patient
and stay logged into IRC — someone will almost always respond if you wait long enough (it may take a few
hours).

• If you don’t have an IRC client handy, use the webchat.

• You can direct your IRC client to the channel using this IRC link or you can manually join the #pelican IRC
channel on the freenode IRC network.

5.12.3 Contributing code

Before you submit a contribution, please ask whether it is desired so that you don’t spend a lot of time working on
something that would be rejected for a known reason. Consider also whether your new feature might be better suited
as a plugin — you can ask for help to make that determination.

5.12. Contributing and feedback guidelines 71

https://dpaste.de/
https://kiwiirc.com/client/irc.freenode.net/?#pelican
irc://irc.freenode.net/pelican
https://freenode.net/
https://docs.getpelican.com/en/latest/plugins.html


Pelican Documentation, Release 4.5.0

Using Git and GitHub

• Create a new git branch specific to your change (as opposed to making your commits in the master branch).

• Don’t put multiple unrelated fixes/features in the same branch / pull request. For example, if you’re work-
ing on a new feature and find a bugfix that doesn’t require your new feature, make a new distinct branch and
pull request for the bugfix.

• Add a RELEASE.md file in the root of the project that contains the release type (major, minor, patch) and a
summary of the changes that will be used as the release changelog entry. For example:

Release type: minor

Reload browser window upon changes to content, settings, or theme

• Check for unnecessary whitespace via git diff --check before committing.

• First line of your commit message should start with present-tense verb, be 50 characters or less, and include the
relevant issue number(s) if applicable. Example: Ensure proper PLUGIN_PATH behavior. Refs
#428. If the commit completely fixes an existing bug report, please use Fixes #585 or Fix #585 syntax
(so the relevant issue is automatically closed upon PR merge).

• After the first line of the commit message, add a blank line and then a more detailed explanation (when relevant).

• Squash your commits to eliminate merge commits and ensure a clean and readable commit history.

• If you have previously filed a GitHub issue and want to contribute code that addresses that issue, please use
hub pull-request instead of using GitHub’s web UI to submit the pull request. This isn’t an absolute
requirement, but makes the maintainers’ lives much easier! Specifically: install hub and then run hub pull-
request -i [ISSUE] to turn your GitHub issue into a pull request containing your code.

• After you have issued a pull request, the continuous integration (CI) system will run the test suite for all sup-
ported Python versions and check for PEP8 compliance. If any of these checks fail, you should fix them. (If
tests fail on the CI system but seem to pass locally, ensure that local test runs aren’t skipping any tests.)

Contribution quality standards

• Adhere to PEP8 coding standards. This can be eased via the pycodestyle or flake8 tools, the latter of which in
particular will give you some useful hints about ways in which the code/formatting can be improved. We try to
keep line length within the 79-character maximum specified by PEP8. Because that can sometimes compromise
readability, the hard/enforced maximum is 88 characters.

• Ensure your code is compatible with the officially-supported Python releases.

• Add docs and tests for your changes. Undocumented and untested features will not be accepted.

• Run all the tests on all versions of Python supported by Pelican to ensure nothing was accidentally broken.

Check out our Git Tips page or ask for help if you need assistance or have any questions about these guidelines.

5.12.4 Setting up the development environment

While there are many ways to set up one’s development environment, the following instructions will utilize Pip and
Poetry. These tools facilitate managing virtual environments for separate Python projects that are isolated from one
another, so you can use different packages (and package versions) for each.

Please note that Python 3.6+ is required for Pelican development.

(Optional) If you prefer to install Poetry once for use with multiple projects, you can install it via:
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curl -sSL https://raw.githubusercontent.com/sdispater/poetry/master/get-poetry.py |
→˓python

Point your web browser to the Pelican repository and tap the Fork button at top-right. Then clone the source for your
fork and add the upstream project as a Git remote:

mkdir ~/projects
git clone https://github.com/YOUR_USERNAME/pelican.git ~/projects/pelican
cd ~/projects/pelican
git remote add upstream https://github.com/getpelican/pelican.git

While Poetry can dynamically create and manage virtual environments, we’re going to manually create and activate a
virtual environment:

mkdir ~/virtualenvs
python3 -m venv ~/virtualenvs/pelican
source ~/virtualenvs/pelican/bin/activate

Install the needed dependencies and set up the project:

python -m pip install invoke
invoke setup
python -m pip install -e ~/projects/pelican

Your local environment should now be ready to go!

5.12.5 Development

Once Pelican has been set up for local development, create a topic branch for your bug fix or feature:

git checkout -b name-of-your-bugfix-or-feature

Now you can make changes to Pelican, its documentation, and/or other aspects of the project.

Running the test suite

Each time you make changes to Pelican, there are two things to do regarding tests: check that the existing tests pass,
and add tests for any new features or bug fixes. The tests are located in pelican/tests, and you can run them via:

invoke tests

In addition to running the test suite, the above invocation will also check code style and let you know whether non-
conforming patterns were found. In some cases these linters will make the needed changes directly, while in other
cases you may need to make additional changes until invoke tests no longer reports any code style violations.

After making your changes and running the tests, you may see a test failure mentioning that “some generated files
differ from the expected functional tests output.” If you have made changes that affect the HTML output generated
by Pelican, and the changes to that output are expected and deemed correct given the nature of your changes, then
you should update the output used by the functional tests. To do so, make sure you have both en_EN.utf8 and
fr_FR.utf8 locales installed, and then run the following command:

invoke update-functional-tests
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You may also find that some tests are skipped because some dependency (e.g., Pandoc) is not installed. This does not
automatically mean that these tests have passed; you should at least verify that any skipped tests are not affected by
your changes.

You should run the test suite under each of the supported versions of Python. This is best done by creating a separate
Python environment for each version. Tox is a useful tool to automate running tests inside virtualenv environ-
ments.

Building the docs

If you make changes to the documentation, you should build and inspect your changes before committing them:

invoke docserve

Open http://localhost:8000 in your browser to review the documentation. While the above task is running, any changes
you make and save to the documentation should automatically appear in the browser, as it live-reloads when it detects
changes to the documentation source files.

Plugin development

To create a new Pelican plugin, please refer to the plugin template repository for detailed instructions.

If you want to contribute to an existing Pelican plugin, follow the steps above to set up Pelican for local development,
and then create a directory to store cloned plugin repositories:

mkdir -p ~/projects/pelican-plugins

Assuming you wanted to contribute to the Simple Footnotes plugin, you would first browse to the Simple Footnotes
repository on GitHub and tap the Fork button at top-right. Then clone the source for your fork and add the upstream
project as a Git remote:

git clone https://github.com/YOUR_USERNAME/simple-footnotes.git ~/projects/pelican-
→˓plugins/simple-footnotes
cd ~/projects/pelican-plugins/simple-footnotes
git remote add upstream https://github.com/pelican-plugins/simple-footnotes.git

Install the needed dependencies and set up the project:

invoke setup

Create a topic branch for your plugin bug fix or feature:

git checkout -b name-of-your-bugfix-or-feature

After writing new tests for your plugin changes, run the plugin test suite:

invoke tests

Submitting your changes

Assuming linting validation and tests pass, add a RELEASE.md file in the root of the project that contains the release
type (major, minor, patch) and a summary of the changes that will be used as the release changelog entry. For example:
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Release type: patch

Fix browser reloading upon changes to content, settings, or theme

Commit your changes and push your topic branch:

git add .
git commit -m "Your detailed description of your changes"
git push origin name-of-your-bugfix-or-feature

Finally, browse to your repository fork on GitHub and submit a pull request.

5.12.6 Logging tips

Try to use logging with appropriate levels.

For logging messages that are not repeated, use the usual Python way:

# at top of file
import logging
logger = logging.getLogger(__name__)

# when needed
logger.warning("A warning with %s formatting", arg_to_be_formatted)

Do not format log messages yourself. Use %s formatting in messages and pass arguments to logger. This is important,
because the Pelican logger will preprocess some arguments, such as exceptions.

Limiting extraneous log messages

If the log message can occur several times, you may want to limit the log to prevent flooding. In order to do that, use
the extra keyword argument for the logging message in the following format:

logger.warning("A warning with %s formatting", arg_to_be_formatted,
extra={'limit_msg': 'A generic message for too many warnings'})

Optionally, you can also set 'limit_args' as a tuple of arguments in extra dict if your generic message needs
formatting.

Limit is set to 5, i.e, first four logs with the same 'limit_msg' are outputted normally but the fifth one will be
logged using 'limit_msg' (and 'limit_args' if present). After the fifth, corresponding log messages will be
ignored.

For example, if you want to log missing resources, use the following code:

for resource in resources:
if resource.is_missing:

logger.warning(
'The resource %s is missing', resource.name,
extra={'limit_msg': 'Other resources were missing'})

The log messages will be displayed as follows:
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WARNING: The resource prettiest_cat.jpg is missing
WARNING: The resource best_cat_ever.jpg is missing
WARNING: The resource cutest_cat.jpg is missing
WARNING: The resource lolcat.jpg is missing
WARNING: Other resources were missing

Outputting traceback in the logs

If you’re logging inside an except block, you may want to provide the traceback information as well. You can do that
by setting exc_info keyword argument to True during logging. However, doing so by default can be undesired
because tracebacks are long and can be confusing to regular users. Try to limit them to --debug mode like the
following:

try:
some_action()

except Exception as e:
logger.error('Exception occurred: %s', e,

exc_info=settings.get('DEBUG', False))

5.13 Pelican internals

This section describe how Pelican works internally. As you’ll see, it’s quite simple, but a bit of documentation doesn’t
hurt. :)

You can also find in the Some history about Pelican section an excerpt of a report the original author wrote with some
software design information.

5.13.1 Overall structure

What Pelican does is take a list of files and process them into some sort of output. Usually, the input files are reStruc-
turedText and Markdown files, and the output is a blog, but both input and output can be anything you want.

The logic is separated into different classes and concepts:

• Writers are responsible for writing files: .html files, RSS feeds, and so on. Since those operations are commonly
used, the object is created once and then passed to the generators.

• Readers are used to read from various formats (HTML, Markdown and reStructuredText for now, but the system
is extensible). Given a file, they return metadata (author, tags, category, etc.) and content (HTML-formatted).

• Generators generate the different outputs. For instance, Pelican comes with ArticlesGenerator and
PageGenerator. Given a configuration, they can do whatever they want. Most of the time, it’s generating
files from inputs.

• Pelican also uses templates, so it’s easy to write your own theme. The syntax is Jinja2 and is very easy to learn,
so don’t hesitate to jump in and build your own theme.

5.13.2 How to implement a new reader?

Is there an awesome markup language you want to add to Pelican? Well, the only thing you have to do is to create a
class with a read method that returns HTML content and some metadata.

Take a look at the Markdown reader:
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from pelican.readers import BaseReader
from pelican.utils import pelican_open
from markdown import Markdown

class MarkdownReader(BaseReader):
enabled = True

def read(self, source_path):
"""Parse content and metadata of markdown files"""

with pelican_open(source_path) as text:
md_extensions = {'markdown.extensions.meta': {},

'markdown.extensions.codehilite': {}}
md = Markdown(extensions=md_extensions.keys(),

extension_configs=md_extensions)
content = md.convert(text)

metadata = {}
for name, value in md.Meta.items():

name = name.lower()
meta = self.process_metadata(name, value[0])
metadata[name] = meta

return content, metadata

Simple, isn’t it?

If your new reader requires additional Python dependencies, then you should wrap their import statements in a
try...except block. Then inside the reader’s class, set the enabled class attribute to mark import success or
failure. This makes it possible for users to continue using their favourite markup method without needing to install
modules for formats they don’t use.

5.13.3 How to implement a new generator?

Generators have two important methods. You’re not forced to create both; only the existing ones will be called.

• generate_context, that is called first, for all the generators. Do whatever you have to do, and update the
global context if needed. This context is shared between all generators, and will be passed to the templates.
For instance, the PageGenerator generate_context method finds all the pages, transforms them into
objects, and populates the context with them. Be careful not to output anything using this context at this stage,
as it is likely to change by the effect of other generators.

• generate_output is then called. And guess what is it made for? Oh, generating the output. :) It’s here
that you may want to look at the context and call the methods of the writer object that is passed as the first
argument of this function. In the PageGenerator example, this method will look at all the pages recorded
in the global context and output a file on the disk (using the writer method write_file) for each page
encountered.

5.14 Some history about Pelican

Warning: This page comes from a report the original author (Alexis Métaireau) wrote right after writing Pelican,
in December 2010. The information may not be up-to-date.
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Pelican is a simple static blog generator. It parses markup files (Markdown or reStructuredText for now) and generates
an HTML folder with all the files in it. I’ve chosen to use Python to implement Pelican because it seemed to be simple
and to fit to my needs. I did not wanted to define a class for each thing, but still wanted to keep my things loosely
coupled. It turns out that it was exactly what I wanted. From time to time, thanks to the feedback of some users, it
took me a very few time to provide fixes on it. So far, I’ve re-factored the Pelican code by two times; each time took
less than 30 minutes.

5.14.1 Use case

I was previously using WordPress, a solution you can host on a web server to manage your blog. Most of the time, I
prefer using markup languages such as Markdown or reStructuredText to type my articles. To do so, I use vim. I think
it is important to let the people choose the tool they want to write the articles. In my opinion, a blog manager should
just allow you to take any kind of input and transform it to a weblog. That’s what Pelican does. You can write your
articles using the tool you want, and the markup language you want, and then generate a static HTML weblog.

To be flexible enough, Pelican has template support, so you can easily write your own themes if you want to.

5.14.2 Design process

Pelican came from a need I have. I started by creating a single file application, and I have make it grow to support
what it does by now. To start, I wrote a piece of documentation about what I wanted to do. Then, I created the content
I wanted to parse (the reStructuredText files) and started experimenting with the code. Pelican was 200 lines long and
contained almost ten functions and one class when it was first usable.

I have been facing different problems all over the time and wanted to add features to Pelican while using it. The first
change I have done was to add the support of a settings file. It is possible to pass the options to the command line, but
can be tedious if there is a lot of them. In the same way, I have added the support of different things over time: Atom
feeds, multiple themes, multiple markup support, etc. At some point, it appears that the “only one file” mantra was
not good enough for Pelican, so I decided to rework a bit all that, and split this in multiple different files.

I’ve separated the logic in different classes and concepts:

• writers are responsible of all the writing process of the files. They are responsible of writing .html files, RSS
feeds and so on. Since those operations are commonly used, the object is created once, and then passed to the
generators.

• readers are used to read from various formats (Markdown and reStructuredText for now, but the system is
extensible). Given a file, they return metadata (author, tags, category, etc) and content (HTML formatted).
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• generators generate the different outputs. For instance, Pelican comes with an ArticlesGenerator and Pages-
Generator, into others. Given a configuration, they can do whatever you want them to do. Most of the time it’s
generating files from inputs (user inputs and files).

I also deal with contents objects. They can be Articles, Pages, Quotes, or whatever you want. They are defined
in the contents.py module and represent some content to be used by the program.

5.14.3 In more detail

Here is an overview of the classes involved in Pelican.

The interface does not really exist, and I have added it only to clarify the whole picture. I do use duck typing and not
interfaces.

Internally, the following process is followed:

• First of all, the command line is parsed, and some content from the user is used to initialize the different
generator objects.

• A context is created. It contains the settings from the command line and a settings file if provided.

• The generate_context method of each generator is called, updating the context.

• The writer is created and given to the generate_output method of each generator.

I make two calls because it is important that when the output is generated by the generators, the context will not
change. In other words, the first method generate_context should modify the context, whereas the second
generate_output method should not.
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Then, it is up to the generators to do what the want, in the generate_context and generate_contentmethod.
Taking the ArticlesGenerator class will help to understand some others concepts. Here is what happens when
calling the generate_context method:

• Read the folder “path”, looking for restructured text files, load each of them, and construct a content object
(Article) with it. To do so, use Reader objects.

• Update the context with all those articles.

Then, the generate_content method uses the context and the writer to generate the wanted output.

5.15 Release history

5.15.1 4.5.0 - 2020-08-20

• Add namespace plugin support; list plugins via pelican-plugins command

• Override settings via -e / --extra-settings CLI option flags

• Add settings for custom Jinja globals and tests

• Customize article summary ellipsis via SUMMARY_END_MARKER setting

• Customize Typogrify dash handling via new TYPOGRIFY_DASHES setting

• Support Unicode when generating slugs

• Support Asciidoc .adoc file generation in Pelican importer

• Improve user experience when pelican --listen web server is quit

• Improve Invoke tasks template

• Include tests in source distributions

• Switch CI from Travis to GitHub Actions

• Remove support for Python 2.7

5.15.2 4.2.0 - 2019-10-17

• Support inline SVGs; don’t treat titles in SVGs as HTML titles

• Add category to feeds (in addition to tags)

• Improve content metadata field docs

• Add docs for including other Markdown/reST files in content

5.15.3 4.1.3 - 2019-10-09

• Fix quick-start docs regarding pelican --listen

• Set default listen address to 127.0.0.1

• Add extra/optional Markdown dependency to setup.py

• Use correct SSH port syntax for rsync in tasks.py

• Place all deprecated settings handling together
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• Add related project URLs for display on PyPI

• Skip some tests on Windows that can’t pass due to filesystem differences

5.15.4 4.1.2 - 2019-09-23

Fix pelican.settings.load_source to avoid caching issues - PR #2621

5.15.5 4.1.1 - 2019-08-23

• Add AutoPub to auto-publish releases on PR merge

• Add CSS classes for reStructuredText figures

• Pass argv to Pelican main entrypoint

• Set default content status to a blank string rather than None

5.15.6 4.1.0 - 2019-07-14

• Live browser reload upon changed files (provided via Invoke task)

• Add pyproject.toml, managed by Poetry

• Support for invoking python -m pelican

• Add relative source path attribute to content

• Allow directories in EXTRA_PATH_METADATA

• Add all_articles variable to period pages (for recent posts functionality)

• Improve debug mode output

• Remove blank or duplicate summaries from Atom feed

• Fix bugs in pagination, pelican-import, pelican-quickstart, and feed importer

5.15.7 4.0.1 (2018-11-30)

• Refactor pelican.server logging

• Fix bug in which all static files were processed as “draft”

• Bug fixes for Invoke/Makefile automation, Importer, and other miscellanea

If upgrading from 3.7.x or earlier, please note that slug-related settings in 4.0+ use {slug} and/or {lang} rather
than %s. If %s-style settings are encountered, Pelican will emit a warning and fall back to the default setting.
Some user-submitted themes might try to format setting values but fail upon site build with a TypeError. In
such cases, the theme needs to be updated. For example, instead of TAG_FEED_ATOM|format(tag.slug), use
TAG_FEED_ATOM.format(slug=tag.slug)
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5.15.8 4.0.0 (2018-11-13)

• Replace develop_server.sh script with pelican --listen

• Improved copy/link behavior for large static files (e.g., videos)

• New {static} syntax to link to static content; content linked to by {static} and {attach} is automati-
cally copied over even if not in STATIC_PATHS

• Pages can now have draft status

• Show current settings via new --print-settings flag

• All settings for slugs now use {slug} and/or {lang} rather than %s. If %s-style settings are encountered,
Pelican will emit a warning and fallback to the default setting.

• New signals: feed_generated and page_generated_write_page

• Replace Fabric with Invoke and fabfile.py template with tasks.py

• Replace PAGINATED_DIRECT_TEMPLATES by PAGINATED_TEMPLATES, extending control over pagina-
tion to all templates and making page size variable

• Replace SLUG_SUBSTITUTIONS (and friends) by SLUG_REGEX_SUBSTITUTIONS for more finegrained
control

• '{base_name}' value in PAGINATION_PATTERNS setting no longer strips 'bar' from 'foo/bar.
html' (unless 'bar' == 'index').

• ARTICLE_ORDER_BY and PAGE_ORDER_BY now also affect 1) category, tag and author pages 2) feeds 3)
draft and hidden articles and pages

• New ARTICLE_TRANSLATION_ID and PAGE_TRANSLATION_ID settings to specify metadata attributes
used to identify/disable translations

• Make the HTML reader parse multiple occurrences of metadata tags as a list

• New Blogger XML backup importer

• Wordpress importer now updates file links to point to local copies if the files were downloaded with
--wp-attach.

• Importer no longer inserts extra newlines, to prevent breaking of HTML attributes.

• Pelican server now prioritises foo.html and foo/index.html over foo/ when resolving foo.

5.15.9 3.7.1 (2017-01-10)

• Fix locale issues in Quickstart script

• Specify encoding for README and CHANGELOG in setup.py

5.15.10 3.7.0 (2016-12-12)

• Atom feeds output <content> in addition to <summary>

• Atom feeds use <published> for the original publication date and <updated> for modifications

• Simplify Atom feed ID generation and support URL fragments

• Produce category feeds with category-specific titles
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• RSS feeds now default to summary instead of full content; set RSS_FEED_SUMMARY_ONLY = False to
revert to previous behavior

• Replace MD_EXTENSIONS with MARKDOWN setting

• Replace JINJA_EXTENSIONS with more-robust JINJA_ENVIRONMENT setting

• Improve summary truncation logic to handle special characters and tags that span multiple lines, using HTML
parser instead of regular expressions

• Include summary when looking for intra-site link substitutions

• Link to authors and index via {author}name and {index} syntax

• Override widget names via LINKS_WIDGET_NAME and SOCIAL_WIDGET_NAME

• Add INDEX_SAVE_AS option to override default index.html value

• Remove PAGES context variable for themes in favor of pages

• SLUG_SUBSTITUTIONS now accepts 3-tuple elements, allowing URL slugs to contain non-alphanumeric
characters

• Tag and category slugs can be controlled with greater precision using the TAG_SUBSTITUTIONS and
CATEGORY_SUBSTITUTIONS settings

• Author slugs can be controlled with greater precision using the AUTHOR_SUBSTITUTIONS setting

• DEFAULT_DATE can be defined as a string

• Use mtime instead of ctime when DEFAULT_DATE = 'fs'

• Add --fatal=errors|warnings option for use with continuous integration

• When using generator-level caching, ensure previously-cached files are processed instead of just new files.

• Add Python and Pelican version information to debug output

• Improve compatibility with Python 3.5

• Comply with and enforce PEP8 guidelines

• Replace tables in settings documentation with data:: directives

5.15.11 3.6.3 (2015-08-14)

• Fix permissions issue in release tarball

5.15.12 3.6.2 (2015-08-01)

• Fix installation errors related to Unicode in tests

• Don’t show pagination in notmyidea theme if there’s only one page

• Make hidden pages available in context

• Improve URLWrapper comparison
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5.15.13 3.6.0 (2015-06-15)

• Disable caching by default in order to prevent potential confusion

• Improve caching behavior, replacing pickle with cpickle

• Allow Markdown or reST content in metadata fields other than summary

• Support semicolon-separated author/tag lists

• Improve flexibility of article sorting

• Add --relative-urls argument

• Support devserver listening on addresses other than localhost

• Unify HTTP server handlers to pelican.server throughout

• Handle intra-site links to draft posts

• Move tag_cloud from core to plugin

• Load default theme’s external resources via HTTPS

• Import drafts from WordPress XML

• Improve support for Windows users

• Enhance logging and test suite

• Clean up and refactor codebase

• New signals: all_generators_finalized and page_writer_finalized

5.15.14 3.5.0 (2014-11-04)

• Introduce ARTICLE_ORDER_BY and PAGE_ORDER_BY settings to control the order of articles and pages.

• Include time zone information in dates rendered in templates.

• Expose the reader name in the metadata for articles and pages.

• Add the ability to store static files along with content in the same directory as articles and pages using
{attach} in the path.

• Prevent Pelican from raising an exception when there are duplicate pieces of metadata in a Markdown file.

• Introduce the TYPOGRIFY_IGNORE_TAGS setting to add HTML tags to be ignored by Typogrify.

• Add the ability to use - in date formats to strip leading zeros. For example, %-d/%-m/%y will now result in
the date 9/8/12.

• Ensure feed generation is correctly disabled during quickstart configuration.

• Fix PAGE_EXCLUDES and ARTICLE_EXCLUDES from incorrectly matching sub-directories.

• Introduce STATIC_EXCLUDE setting to add static file excludes.

• Fix an issue when using PAGINATION_PATTERNS while RELATIVE_URLS is enabled.

• Fix feed generation causing links to use the wrong language for month names when using other locales.

• Fix an issue where the authors list in the simple template wasn’t correctly formatted.

• Fix an issue when parsing non-string URLs from settings.

• Improve consistency of debug and warning messages.
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5.15.15 3.4.0 (2014-07-01)

• Speed up content generation via new caching mechanism

• Add selective post generation (instead of always building entire site)

• Many documentation improvements, including switching to prettier RtD theme

• Add support for multiple content and plugin paths

• Add :modified: metadata field to complement :date:. Used to specify the last date and time an article
was updated independently from the date and time it was published.

• Add support for multiple authors via new :authors: metadata field

• Watch for changes in static directories when in auto-regeneration mode

• Add filters to limit log output when desired

• Add language support to drafts

• Add SLUGIFY_SOURCE setting to control how post slugs are generated

• Fix many issues relating to locale and encoding

• Apply Typogrify filter to post summary

• Preserve file metadata (e.g. time stamps) when copying static files to output

• Move AsciiDoc support from Pelican core into separate plugin

• Produce inline links instead of reference-style links when importing content

• Improve handling of IGNORE_FILES setting behavior

• Properly escape symbol characters in tag names (e.g., C++)

• Minor tweaks for Python 3.4 compatibility

• Add several new signals

5.15.16 3.3.0 (2013-09-24)

• Drop Python 3.2 support in favor of Python 3.3

• Add Fabfile so Fabric can be used for workflow automation instead of Make

• OUTPUT_RETENTION setting can be used to preserve metadata (e.g., VCS data such as .hg and .git) from
being removed from output directory

• Tumblr import

• Improve logic and consistency when cleaning output folder

• Improve documentation versioning and release automation

• Improve pagination flexibility

• Rename signals for better consistency (some plugins may need to be updated)

• Move metadata extraction from generators to readers; metadata extraction no longer article-specific

• Deprecate FILES_TO_COPY in favor of STATIC_PATHS and EXTRA_PATH_METADATA

• Summaries in Markdown posts no longer include footnotes

• Remove unnecessary whitespace in output via lstrip_blocks Jinja parameter
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• Move PDF generation from core to plugin

• Replace MARKUP setting with READERS

• Add warning if img tag is missing alt attribute

• Add support for {} in relative links syntax, besides ||

• Add support for {tag} and {category} relative links

• Add a content_written signal

5.15.17 3.2.1 and 3.2.2

• Facilitate inclusion in FreeBSD Ports Collection

5.15.18 3.2 (2013-04-24)

• Support for Python 3!

• Override page save-to location from meta-data (enables using a static page as the site’s home page, for example)

• Time period archives (per-year, per-month, and per-day archives of posts)

• Posterous blog import

• Improve WordPress blog import

• Migrate plugins to separate repository

• Improve HTML parser

• Provide ability to show or hide categories from menu using DISPLAY_CATEGORIES_ON_MENU option

• Auto-regeneration can be told to ignore files via IGNORE_FILES setting

• Improve post-generation feedback to user

• For multilingual posts, use meta-data to designate which is the original and which is the translation

• Add .mdown to list of supported Markdown file extensions

• Document-relative URL generation (RELATIVE_URLS) is now off by default

5.15.19 3.1 (2012-12-04)

• Importer now stores slugs within files by default. This can be disabled with the --disable-slugs option.

• Improve handling of links to intra-site resources

• Ensure WordPress import adds paragraphs for all types of line endings in post content

• Decode HTML entities within WordPress post titles on import

• Improve appearance of LinkedIn icon in default theme

• Add GitHub and Google+ social icons support in default theme

• Optimize social icons

• Add FEED_ALL_ATOM and FEED_ALL_RSS to generate feeds containing all posts regardless of their lan-
guage

• Split TRANSLATION_FEED into TRANSLATION_FEED_ATOM and TRANSLATION_FEED_RSS
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• Different feeds can now be enabled/disabled individually

• Allow for blank author: if AUTHOR setting is not set, author won’t default to ${USER} anymore, and a post
won’t contain any author information if the post author is empty

• Move LESS and Webassets support from Pelican core to plugin

• The DEFAULT_DATE setting now defaults to None, which means that articles won’t be generated unless date
metadata is specified

• Add FILENAME_METADATA setting to support metadata extraction from filename

• Add gzip_cache plugin to compress common text files into a .gz file within the same directory as the
original file, preventing the server (e.g. Nginx) from having to compress files during an HTTP call

• Add support for AsciiDoc-formatted content

• Add USE_FOLDER_AS_CATEGORY setting so that feature can be toggled on/off

• Support arbitrary Jinja template files

• Restore basic functional tests

• New signals: generator_init, get_generators, and article_generate_preread

5.15.20 3.0 (2012-08-08)

• Refactored the way URLs are handled

• Improved the English documentation

• Fixed packaging using setuptools entrypoints

• Added typogrify support

• Added a way to disable feed generation

• Added support for DIRECT_TEMPLATES

• Allow multiple extensions for content files

• Added LESS support

• Improved the import script

• Added functional tests

• Rsync support in the generated Makefile

• Improved feed support (easily pluggable with Feedburner for instance)

• Added support for abbr in reST

• Fixed a bunch of bugs :-)

5.15.21 2.8 (2012-02-28)

• Dotclear importer

• Allow the usage of Markdown extensions

• Themes are now easily extensible

• Don’t output pagination information if there is only one page

• Add a page per author, with all their articles
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• Improved the test suite

• Made the themes easier to extend

• Removed Skribit support

• Added a pelican-quickstart script

• Fixed timezone-related issues

• Added some scripts for Windows support

• Date can be specified in seconds

• Never fail when generating posts (skip and continue)

• Allow the use of future dates

• Support having different timezones per language

• Enhanced the documentation

5.15.22 2.7 (2011-06-11)

• Use logging rather than echoing to stdout

• Support custom Jinja filters

• Compatibility with Python 2.5

• Added a theme manager

• Packaged for Debian

• Added draft support

5.15.23 2.6 (2011-03-08)

• Changes in the output directory structure

• Makes templates easier to work with / create

• Added RSS support (was Atom-only)

• Added tag support for the feeds

• Enhance the documentation

• Added another theme (brownstone)

• Added translations

• Added a way to use cleaner URLs with a rewrite url module (or equivalent)

• Added a tag cloud

• Added an autoreloading feature: the blog is automatically regenerated each time a modification is detected

• Translate the documentation into French

• Import a blog from an RSS feed

• Pagination support

• Added Skribit support
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5.15.24 2.5 (2010-11-20)

• Import from WordPress

• Added some new themes (martyalchin / wide-notmyidea)

• First bug report!

• Linkedin support

• Added a FAQ

• Google Analytics support

• Twitter support

• Use relative URLs, not static ones

5.15.25 2.4 (2010-11-06)

• Minor themes changes

• Add Disqus support (so we have comments)

• Another code refactoring

• Added config settings about pages

• Blog entries can also be generated in PDF

5.15.26 2.3 (2010-10-31)

• Markdown support

5.15.27 2.2 (2010-10-30)

• Prettify output

• Manages static pages as well

5.15.28 2.1 (2010-10-30)

• Make notmyidea the default theme

5.15.29 2.0 (2010-10-30)

• Refactoring to be more extensible

• Change into the setting variables
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5.15.30 1.2 (2010-09-28)

• Added a debug option

• Added per-category feeds

• Use filesystem to get dates if no metadata is provided

• Add Pygments support

5.15.31 1.1 (2010-08-19)

• First working version
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